scholarly journals State-Only Imitation Learning for Dexterous Manipulation

Author(s):  
Ilija Radosavovic ◽  
Xiaolong Wang ◽  
Lerrel Pinto ◽  
Jitendra Malik
Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1278
Author(s):  
Jiang Hua ◽  
Liangcai Zeng ◽  
Gongfa Li ◽  
Zhaojie Ju

Dexterous manipulation of the robot is an important part of realizing intelligence, but manipulators can only perform simple tasks such as sorting and packing in a structured environment. In view of the existing problem, this paper presents a state-of-the-art survey on an intelligent robot with the capability of autonomous deciding and learning. The paper first reviews the main achievements and research of the robot, which were mainly based on the breakthrough of automatic control and hardware in mechanics. With the evolution of artificial intelligence, many pieces of research have made further progresses in adaptive and robust control. The survey reveals that the latest research in deep learning and reinforcement learning has paved the way for highly complex tasks to be performed by robots. Furthermore, deep reinforcement learning, imitation learning, and transfer learning in robot control are discussed in detail. Finally, major achievements based on these methods are summarized and analyzed thoroughly, and future research challenges are proposed.


2005 ◽  
Author(s):  
Frderick L. Crabbe ◽  
Rebecca Hwa

Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 966 ◽  
Author(s):  
Marco Costanzo ◽  
Giuseppe De Maria ◽  
Ciro Natale ◽  
Salvatore Pirozzi

This paper presents the design and calibration of a new force/tactile sensor for robotic applications. The sensor is suitably designed to provide the robotic grasping device with a sensory system mimicking the human sense of touch, namely, a device sensitive to contact forces, object slip and object geometry. This type of perception information is of paramount importance not only in dexterous manipulation but even in simple grasping tasks, especially when objects are fragile, such that only a minimum amount of grasping force can be applied to hold the object without damaging it. Moreover, sensing only forces and not moments can be very limiting to securely grasp an object when it is grasped far from its center of gravity. Therefore, the perception of torsional moments is a key requirement of the designed sensor. Furthermore, the sensor is also the mechanical interface between the gripper and the manipulated object, therefore its design should consider also the requirements for a correct holding of the object. The most relevant of such requirements is the necessity to hold a torsional moment, therefore a soft distributed contact is necessary. The presence of a soft contact poses a number of challenges in the calibration of the sensor, and that is another contribution of this work. Experimental validation is provided in real grasping tasks with two sensors mounted on an industrial gripper.


2021 ◽  
Author(s):  
Markku Suomalainen ◽  
Fares J. Abu-dakka ◽  
Ville Kyrki

AbstractWe present a novel method for learning from demonstration 6-D tasks that can be modeled as a sequence of linear motions and compliances. The focus of this paper is the learning of a single linear primitive, many of which can be sequenced to perform more complex tasks. The presented method learns from demonstrations how to take advantage of mechanical gradients in in-contact tasks, such as assembly, both for translations and rotations, without any prior information. The method assumes there exists a desired linear direction in 6-D which, if followed by the manipulator, leads the robot’s end-effector to the goal area shown in the demonstration, either in free space or by leveraging contact through compliance. First, demonstrations are gathered where the teacher explicitly shows the robot how the mechanical gradients can be used as guidance towards the goal. From the demonstrations, a set of directions is computed which would result in the observed motion at each timestep during a demonstration of a single primitive. By observing which direction is included in all these sets, we find a single desired direction which can reproduce the demonstrated motion. Finding the number of compliant axes and their directions in both rotation and translation is based on the assumption that in the presence of a desired direction of motion, all other observed motion is caused by the contact force of the environment, signalling the need for compliance. We evaluate the method on a KUKA LWR4+ robot with test setups imitating typical tasks where a human would use compliance to cope with positional uncertainty. Results show that the method can successfully learn and reproduce compliant motions by taking advantage of the geometry of the task, therefore reducing the need for localization accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1317
Author(s):  
Alejandro Chacón ◽  
Pere Ponsa ◽  
Cecilio Angulo

In human–robot collaborative assembly tasks, it is necessary to properly balance skills to maximize productivity. Human operators can contribute with their abilities in dexterous manipulation, reasoning and problem solving, but a bounded workload (cognitive, physical, and timing) should be assigned for the task. Collaborative robots can provide accurate, quick and precise physical work skills, but they have constrained cognitive interaction capacity and low dexterous ability. In this work, an experimental setup is introduced in the form of a laboratory case study in which the task performance of the human–robot team and the mental workload of the humans are analyzed for an assembly task. We demonstrate that an operator working on a main high-demanding cognitive task can also comply with a secondary task (assembly) mainly developed for a robot asking for some cognitive and dexterous human capacities producing a very low impact on the primary task. In this form, skills are well balanced, and the operator is satisfied with the working conditions.


Author(s):  
Alireza Shamsoshoara ◽  
Fatemeh Afghah ◽  
Erik Blasch ◽  
Jonathan Ashdown ◽  
Mehdi Bennis
Keyword(s):  

2021 ◽  
pp. 102079
Author(s):  
Kerstin Kläser ◽  
Thomas Varsavsky ◽  
Pawel Markiewicz ◽  
Tom Vercauteren ◽  
Alexander Hammers ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document