A Novel 2-SUR 6-DOF Parallel Manipulator Actuated by Spherical Motion Generators

Author(s):  
Kun Wang ◽  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Bo Li ◽  
Bo Yuan ◽  
...  
Robotica ◽  
2002 ◽  
Vol 20 (4) ◽  
pp. 353-358 ◽  
Author(s):  
Raffaele Di Gregorio

In the literature, 3-RRPRR architectures were proposed to obtain pure translation manipulators. Moreover, the geometric conditions, which 3-RRPRR architectures must match, in order to make the end-effector (platform) perform infinitesimal (elementary) spherical motion were enunciated. The ability to perform elementary spherical motion is a necessary but not sufficient condition to conclude that the platform is bound to accomplish finite spherical motion, i.e. that the mechanism is a spherical parallel manipulator (parallel wrist). This paper demonstrates that the 3-RRPRR architectures matching the geometric conditions for elementary spherical motion make the platform accomplish finite spherical motion, i.e. they are parallel wrists (3-RRPRR wrist), provided that some singular configurations, named translation singularities, are not reached. Moreover, it shows that 3-RRPRR wrists belong to a family of parallel wrists which share the same analytic expression of the constraints which the legs impose on the platform. Finally, the condition that identifies all the translation singularities of the mechanisms of this family is found and geometrically interpreted. The result of this analysis is that the translation singularity locus can be represented by a surface (singularity surface) in the configuration space of the mechanism. Singularity surfaces drawn by exploiting the given condition are useful tools in designing these wrists.


Author(s):  
Kun Wang ◽  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Jun Ding ◽  
Shaoping Bai

Inspired by dual-arm-like manipulation, a novel 6-DOF parallel manipulator with two spherical-universal-revolute limbs is proposed. Compared with general 6-DOF parallel manipulators with six limbs, this new manipulator actuated by spherical motion generators has only two limbs, which brings advantages such as fewer active limbs for avoiding interference, larger reachable and orientational workspace for complex operating, more actuators integrated in active modules for decreasing installation errors and increasing compactness. In this paper, the kinematics of this novel parallel manipulator is solved and illustrated, covering its inverse and forward position analysis, workspace and singularities. The kinematic study reveals interesting features of this manipulator such as multiple working and assembly modes, small footprint and large workspace volume with high dexterity. Numerical examples of kinematic analysis are included. Practical application of the new manipulator is illustrated.


Robotica ◽  
2021 ◽  
pp. 1-26
Author(s):  
Soheil Zarkandi

Abstract Reducing consumed power of a robotic machine has an essential role in enhancing its energy efficiency and must be considered during its design process. This paper deals with dynamic modeling and power optimization of a four-degrees-of-freedom flight simulator machine. Simulator cabin of the machine has yaw, pitch, roll and heave motions produced by a 4RPSP+PS parallel manipulator (PM). Using the Euler–Lagrange method, a closed-form dynamic equation is derived for the 4RPSP+PS PM, and its power consumption is computed on the entire workspace. Then, a newly introduced optimization algorithm called multiobjective golden eagle optimizer is utilized to establish a Pareto front of optimal designs of the manipulator having a relatively larger workspace and lower power consumption. The results are verified through numerical examples.


Robotica ◽  
2021 ◽  
pp. 1-15
Author(s):  
Xiaochu Liu ◽  
Yunfei Cai ◽  
Weitian Liu ◽  
Linlong Zhang ◽  
Chengxin Hu

Abstract In this paper, a special 6-PUS parallel manipulator (PM) is utilized as a shaking table. Unlike the existing results about 6-PUS PMs, we make the actuator direction collinear with the linkage direction at neutral position. With respect to the application background, a further analysis of the special PM is carried out from the perspective of motion/force transmissibility, natural frequency and acceleration capability. Specially, the complete dynamics model is established based on the Kane method. Then, generalized transmission indices based on the screw theory are utilized to reflect its motion ability, and a model of natural frequency is proposed with the axial stiffness of linkages considered. Finally, the effect of the angle between the actuator direction and the linkage direction α on various performances is analyzed, and other results are included to illustrate its feasibility and usability.


Author(s):  
Xiaoyong Wu ◽  
Yujin Wang ◽  
Zhaowei Xiang ◽  
Ran Yan ◽  
Rulong Tan ◽  
...  

Robotica ◽  
2021 ◽  
pp. 1-30
Author(s):  
Soheil Zarkandi

Abstract A comprehensive dynamic modeling and actuator torque minimization of a new symmetrical three-degree-of-freedom (3-DOF) 3-PṞR spherical parallel manipulator (SPM) is presented. Three actuating systems, each of which composed of an electromotor, a gearbox and a double Rzeppa-type driveshaft, produce input torques of the manipulator. Kinematics of the 3-PṞR SPM was recently studied by the author (Zarkandi, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2020, https://doi.org/10.1177%2F0954406220938806). In this paper, a closed-form dynamic equation of the manipulator is derived with the Newton–Euler approach. Then, an optimization problem with kinematic and dynamic constraints is presented to minimize torques of the actuators for implementing a given task. The results are also verified by the SimMechanics model of the manipulator.


Sign in / Sign up

Export Citation Format

Share Document