Study of In Vitro Diagnostic Preconcentration Technique via Surface Acoustic Wave Modified with the 54 MHz Communication Chip

Author(s):  
Ming-Hung Chien ◽  
S.H. Chiang ◽  
Ching-Cheng Chuang ◽  
Jung-Chih Chen
2014 ◽  
Vol 5 ◽  
pp. 1823-1835 ◽  
Author(s):  
Anna Pohl ◽  
Ingrid M Weiss

A microfluidic biosensor with surface acoustic wave technology was used in this study to monitor the interaction of calcium carbonate with standard carboxylate self-assembled monolayer sensor chips. Different fluids, with and without biomolecular components, were investigated. The pH-dependent surface interactions of two bio-inspired cationic peptides, AS8 and ES9, which are similar to an extracellular domain of the chitin synthase involved in mollusc shell formation, were also investigated in a biological buffer system. A range of experimental conditions are described that are suitable to study non-covalent molecular interactions in the presence of ionic substances, such as, mineral precursors below the solubility equilibrium. The peptide ES9, equal to the mollusc chitin synthase epitope, is less sensitive to changes in pH than its counterpart AS8 with a penta-lysine core, which lacks the flanking acidic residues. This study demonstrates the extraordinary potential of microfluidic surface acoustic wave biosensors to significantly expand our experimental capabilities for studying the principles underlying biomineralization in vitro.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1838
Author(s):  
Yu-Chi Peng ◽  
Chia-Hsuan Cheng ◽  
Hiromi Yatsuda ◽  
Szu-Heng Liu ◽  
Shih-Jen Liu ◽  
...  

Since the Coronavirus disease 2019 (COVID-19) pandemic outbreak, many methods have been used to detect antigens or antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including viral culture, nucleic acid test, and immunoassay. The shear-horizontal surface acoustic wave (SH-SAW) biosensor is a novel pathogen detection platform with the advantages of high sensitivity and short detection time. The objective of this study is to develop a SH-SAW biosensor to detect the anti-SARS-CoV-2 nucleocapsid antibody. The rabbit sera collected from rabbits on different days after SARS-CoV-2 N protein injection were evaluated by SH-SAW biosensor and enzyme-linked immunosorbent assay (ELISA). The results showed that the SH-SAW biosensor achieved a high correlation coefficient (R = 0.9997) with different concentrations (34.375–1100 ng/mL) of the “spike-in” anti-N protein antibodies. Compared to ELISA, the SH-SAW biosensor has better sensitivity and can detect anti-N protein IgG signals earlier than ELISA on day 6 (p < 0.05). Overall, in this study, we demonstrated that the SH-SAW biosensor is a promising platform for rapid in vitro diagnostic (IVD) testing, especially for antigen or antibody testing.


1981 ◽  
Vol 42 (C4) ◽  
pp. C4-365-C4-368
Author(s):  
K. L. Bhatia ◽  
M.v. Haumeder ◽  
S. Hunklinger

2014 ◽  
Vol 134 (12) ◽  
pp. 1934-1935
Author(s):  
Tsunemasa Saiki ◽  
Yuya Matsui ◽  
Yasuto Arisue ◽  
Yuichi Utsumi ◽  
Akinobu Yamaguchi

2008 ◽  
Author(s):  
A. Kabulski ◽  
V. R. Pagán ◽  
D. Cortes ◽  
R. Burda ◽  
O. M. Mukdadi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document