scholarly journals Optimal primary coil size for wireless power telemetry to medical implants

Author(s):  
Shawn K. Kelly ◽  
Patrick Doyle ◽  
Attila Priplata ◽  
Oscar Mendoza ◽  
John L. Wyatt
Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2720 ◽  
Author(s):  
Tommaso Campi ◽  
Silvano Cruciani ◽  
Valerio De Santis ◽  
Francesca Maradei ◽  
Mauro Feliziani

This study deals with the inductive-based wireless power transfer (WPT) technology applied to power a deep implant with no fixed position. The usage of a large primary coil is here proposed in order to obtain a nearly uniform magnetic field inside the human body at intermediate frequencies (IFs). A simple configuration of the primary coil, derived by the Helmholtz theory, is proposed. Then, a detailed analysis is carried out to assess the compliance with electromagnetic field (EMF) safety standards. General guidelines on the design of primary and secondary coils are provided for powering or charging a deep implant of cylindrical shape with or without metal housing. Finally, three different WPT coil demonstrators have been fabricated and tested. The obtained results have demonstrated the validity of the proposed technology.


2017 ◽  
Vol 137 (4) ◽  
pp. 326-333
Author(s):  
Chiaki Nagai ◽  
Kenji Inukai ◽  
Masato Kobayashi ◽  
Tatsuya Tanaka ◽  
Kensho Abumi ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 28-41
Author(s):  
Giuseppina Monti ◽  
Gloria Rosaria De Giovanni ◽  
Marco De Liso ◽  
Matteo Pascali ◽  
Luciano Tarricone

Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1890 ◽  
Author(s):  
Yosra Ben Fadhel ◽  
Sana Ktata ◽  
Khaled Sedraoui ◽  
Salem Rahmani ◽  
Kamal Al-Haddad

Wireless Power Transfer (WPT) is a promising technique, yet still an experimental solution, to replace batteries in existing implants and overcome the related health complications. However, not all techniques are adequate to meet the safety requirements of medical implants for patients. Ensuring a compromise between a small form factor and a high Power Transfer Efficiency (PTE) for transcutaneous applications still remains a challenge. In this work, we have used a resonant inductive coupling for WPT and a coil geometry optimization approach to address constraints related to maintaining a small form factor and the efficiency of power transfer. Thus, we propose a WPT system for medical implants operating at 13.56 MHz using high-efficiency Complementary Metal Oxide-Semiconductor (CMOS) components and an optimized Printed Circuit Coil (PCC). It is divided into two main circuits, a transmitter circuit located outside the human body and a receiver circuit implanted inside the body. The transmitter circuit was designed with an oscillator, driver and a Class-E power amplifier. Experimental results acquired in the air medium show that the proposed system reaches a power transfer efficiency of 75.1% for 0.5 cm and reaches 5 cm as a maximum transfer distance for 10.67% of the efficiency, all of which holds promise for implementing WPT for medical implants that don’t require further medical intervention, and without taking up a lot of space.


Sign in / Sign up

Export Citation Format

Share Document