A forward kinematics based statistical method for the pose errors of a 6-dof parallel manipulator

Author(s):  
Jian Ding ◽  
Jianguang Li ◽  
Yingxue Yao ◽  
Chuntian Xu ◽  
Huaijing Jing
2018 ◽  
Vol 26 (12) ◽  
pp. 2982-2990
Author(s):  
强红宾 QIANG Hong-bin ◽  
王力航 WANG Li-hang ◽  
姜 雪 JIANG Xue ◽  
张立杰 ZHANG Li-jie

Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Robotica ◽  
2012 ◽  
Vol 31 (3) ◽  
pp. 381-388 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Mario A. García-Murillo ◽  
Eduardo Castillo-Castaneda

SUMMARYThis study addresses the kinematics of a six-degrees-of-freedom parallel manipulator whose moving platform is a regular triangular prism. The moving and fixed platforms are connected to each other by means of two identical parallel manipulators. Simple forward kinematics and reduced singular regions are the main benefits offered by the proposed parallel manipulator. The Input–Output equations of velocity and acceleration are systematically obtained by resorting to reciprocal-screw theory. A case study, which is verified with the aid of commercially available software, is included with the purpose to exemplify the application of the method of kinematic analysis.


2012 ◽  
Vol 12 (5) ◽  
Author(s):  
Mir Amin Hosseini ◽  
Hamid-Reza Mohammadi Daniali

Parallel manipulators consist of fixed and moving platforms connected to each other with some actuated links. They have some significant advantages over their serial counterparts. While, they suffer from relatively small workspaces, complex kinematics relations and highly singular points within their workspaces. In this paper, forward kinematics of Tricept parallel manipulator is solved analytically and its workspace optimization is performed. This parallel manipulator has a complex degree of freedom, therefore leads to dimensional in-homogeneous Jacobian matrices. Thus, we divide some entries of the Jacobian by units of length, thereby producing a new Jacobian that is dimensionally homogeneous. Moreover, its workspace is parameterized using some design parameters. Then, using GA method, the workspace is optimized subjects to some geometric constraints. Finally, dexterity of the design is evaluated. Keywords- Kinematic, Workspace, Singularity, TriceptABSTRAK - Manipulator selari terdiri daripada platform tetap dan bergerak yang bersambung antara satu sama lain dengan beberapa pautan bergerak. Manipulator selari mempunyai beberapa kebaikan tertentu dibandingkan dengan yang bersamaan dengannya. Walaupun ia mempunyai ruang kerja yang sempit, hubungan kinematik kompleks dan titik tunggal tinggi dalam linkungan ruang kerjanya. Dalam kajian ini, kinematik ke hadapan manipulator selari Tricept diselesaikan secara analisa dan pengoptimuman ruang kerja dijalankan. Manipulator selari ini mempunyai darjah kebebasan yang kompleks, yang menyebabkan ia mendorong kepada kehomogenan dimensi matriks Jacobian. Catatan Jacobian dibahagikan kepada unit panjang, dimana ia menghasilkan Jacobian baru yang homogen dimensinya. Tambahan, ruang kerjanya diparameterkan dengan menggunakan beberapa parameter reka bentuk. Kemudian, dengan kaedah GA, ruang kerja mengoptimakan subjek kepada beberapa kekangan geometrik. Akhirnya, kecakatan reka bentuk dinilaikan.Keywords- Kinematic, Workspace, Singularity, Tricept


Author(s):  
Jody A. Saglia ◽  
Jian S. Dai

This paper presents the geometry and the kinematic analysis of a parallel manipulator developed for ankle rehabilitation, as the beginning of a control system design process. First the geometry of the parallel mechanism is described, secondly the equations for the inverse and the forward kinematics are obtained, then the forward kinematics is analyzed in order to define all the possible configurations of the moving platform. Finally the Jacobian matrix of the rig is obtained by differentiating the position equations and the singularities are investigated, comparing the non-redundant and redundant type of mechanism.


1998 ◽  
Vol 123 (2) ◽  
pp. 254-260 ◽  
Author(s):  
Carlo Innocenti

The paper presents a new algorithm to solve, in polynomial form, the forward kinematics of the general-geometry 6-6 fully-parallel manipulator. The forty solutions that the problem at hand admits in the complex domain are found by determining the roots of a 40th-order univariate polynomial equation. Unlike the existing algorithm, the proposed one is suitable for implementation in a standard floating-point computation environment. A numerical example shows application of the new algorithm to a case study.


Sign in / Sign up

Export Citation Format

Share Document