scholarly journals GIS-based risk map analysis of Leishmaniasis disease in Isfahan, Iran

Author(s):  
Golnush Masghati Amoli
Keyword(s):  
Risk Map ◽  
2012 ◽  
Vol 594-597 ◽  
pp. 1983-1987
Author(s):  
Xiao Ling Wang ◽  
Long Zhou ◽  
Rui Rui Sun

The flood risk map is useful to make a regional flood emergency plan and analyze the dam-break flood risk. A three-dimensional mathematical model is applied to simulate the floods evolution with consideration of the dam-break process and the complex boundary condition synthetically, and the finite volume method is used to get a discrete solution. The flood evolution process of Dongwushi reservoir in the instantaneous collapse conditions is taken as a case, and the flood risk map is obtained based on the results of calculation.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1763 ◽  
Author(s):  
José Terán ◽  
Loraine Navarro ◽  
Christian G. Quintero M. ◽  
Mauricio Pardo

Through the application of intelligent systems in driver assistance systems, the experience of traveling by road has become much more comfortable and safe. In this sense, this paper then reports the development of an intelligent driving assistant, based on vehicle telemetry and road accident risk map analysis, whose responsibility is to alert the driver in order to avoid risky situations that may cause traffic accidents. In performance evaluations using real cars in a real environment, the on-board intelligent assistant reproduced real-time audio-visual alerts according to information obtained from both telemetry and road accident risk map analysis. As a result, an intelligent assistance agent based on fuzzy reasoning was obtained, which supported the driver correctly in real-time according to the telemetry data, the vehicle environment and the principles of secure driving practices and transportation regulation laws. Experimental results and conclusions emphasizing the advantages of the proposed intelligent driving assistant in the improvement of the driving task are presented.


2017 ◽  
Author(s):  
Natalia Sizochenko ◽  
Alicja Mikolajczyk ◽  
Karolina Jagiello ◽  
Tomasz Puzyn ◽  
Jerzy Leszczynski ◽  
...  

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been<br>discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised and unsupervised machine learning techniques to find underlying factors responsible for toxicity.


2017 ◽  
Author(s):  
Natalia Sizochenko ◽  
Alicja Mikolajczyk ◽  
Karolina Jagiello ◽  
Tomasz Puzyn ◽  
Jerzy Leszczynski ◽  
...  

Application of predictive modeling approaches is able solve the problem of the missing data. There are a lot of studies that investigate the effects of missing values on qualitative or quantitative modeling, but only few publications have been<br>discussing it in case of applications to nanotechnology related data. Current project aimed at the development of multi-nano-read-across modeling technique that helps in predicting the toxicity of different species: bacteria, algae, protozoa, and mammalian cell lines. In this study, the experimental toxicity for 184 metal- and silica oxides (30 unique chemical types) nanoparticles from 15 experimental datasets was analyzed. A hybrid quantitative multi-nano-read-across approach that combines interspecies correlation analysis and self-organizing map analysis was developed. At the first step, hidden patterns of toxicity among the nanoparticles were identified using a combination of methods. Then the developed model that based on categorization of metal oxide nanoparticles’ toxicity outcomes was evaluated by means of combination of supervised and unsupervised machine learning techniques to find underlying factors responsible for toxicity.


2021 ◽  
pp. 1-22
Author(s):  
Jaume Binimelis Sebastián ◽  
Antoni Ordinas Garau ◽  
Maurici Ruiz Pérez

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1291
Author(s):  
Seda Camalan ◽  
Hanya Mahmood ◽  
Hamidullah Binol ◽  
Anna Luiza Damaceno Araújo ◽  
Alan Roger Santos-Silva ◽  
...  

Oral cancer/oral squamous cell carcinoma is among the top ten most common cancers globally, with over 500,000 new cases and 350,000 associated deaths every year worldwide. There is a critical need for objective, novel technologies that facilitate early, accurate diagnosis. For this purpose, we have developed a method to classify images as “suspicious” and “normal” by performing transfer learning on Inception-ResNet-V2 and generated automated heat maps to highlight the region of the images most likely to be involved in decision making. We have tested the developed method’s feasibility on two independent datasets of clinical photographic images of 30 and 24 patients from the UK and Brazil, respectively. Both 10-fold cross-validation and leave-one-patient-out validation methods were performed to test the system, achieving accuracies of 73.6% (±19%) and 90.9% (±12%), F1-scores of 97.9% and 87.2%, and precision values of 95.4% and 99.3% at recall values of 100.0% and 81.1% on these two respective cohorts. This study presents several novel findings and approaches, namely the development and validation of our methods on two datasets collected in different countries showing that using patches instead of the whole lesion image leads to better performance and analyzing which regions of the images are predictive of the classes using class activation map analysis.


Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 104 ◽  
Author(s):  
Qiang Liu ◽  
Hongmao Yang ◽  
Min Liu ◽  
Rui Sun ◽  
Junhai Zhang

Cities located in the transitional zone between Taihang Mountains and North China plain run high flood risk in recent years, especially urban waterlogging risk. In this paper, we take Shijiazhuang, which is located in this transitional zone, as the study area and proposed a new flood risk assessment model for this specific geographical environment. Flood risk assessment indicator factors are established by using the digital elevation model (DEM), along with land cover, economic, population, and precipitation data. A min-max normalization method is used to normalize the indices. An analytic hierarchy process (AHP) method is used to determine the weight of each normalized index and the geographic information system (GIS) spatial analysis tool is adopted for calculating the risk map of flood disaster in Shijiazhuang. This risk map is consistent with the reports released by Hebei Provincial Water Conservancy Bureau and can provide reference for flood risk management.


Sign in / Sign up

Export Citation Format

Share Document