scholarly journals Discriminative learning of deformable contour models

Author(s):  
Haithem Boussaid ◽  
Iasonas Kokkinos ◽  
Nikos Paragios
1968 ◽  
Vol 65 (3, Pt.1) ◽  
pp. 427-432 ◽  
Author(s):  
R. C. Gonzalez ◽  
M. E. Bitterman

Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 192
Author(s):  
Umer Sadiq Khan ◽  
Xingjun Zhang ◽  
Yuanqi Su

The active contour model is a comprehensive research technique used for salient object detection. Most active contour models of saliency detection are developed in the context of natural scenes, and their role with synthetic and medical images is not well investigated. Existing active contour models perform efficiently in many complexities but facing challenges on synthetic and medical images due to the limited time like, precise automatic fitted contour and expensive initialization computational cost. Our intention is detecting automatic boundary of the object without re-initialization which further in evolution drive to extract salient object. For this, we propose a simple novel derivative of a numerical solution scheme, using fast Fourier transformation (FFT) in active contour (Snake) differential equations that has two major enhancements, namely it completely avoids the approximation of expansive spatial derivatives finite differences, and the regularization scheme can be generally extended more. Second, FFT is significantly faster compared to the traditional solution in spatial domain. Finally, this model practiced Fourier-force function to fit curves naturally and extract salient objects from the background. Compared with the state-of-the-art methods, the proposed method achieves at least a 3% increase of accuracy on three diverse set of images. Moreover, it runs very fast, and the average running time of the proposed methods is about one twelfth of the baseline.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2450
Author(s):  
Fahd Alharithi ◽  
Ahmed Almulihi ◽  
Sami Bourouis ◽  
Roobaea Alroobaea ◽  
Nizar Bouguila

In this paper, we propose a novel hybrid discriminative learning approach based on shifted-scaled Dirichlet mixture model (SSDMM) and Support Vector Machines (SVMs) to address some challenging problems of medical data categorization and recognition. The main goal is to capture accurately the intrinsic nature of biomedical images by considering the desirable properties of both generative and discriminative models. To achieve this objective, we propose to derive new data-based SVM kernels generated from the developed mixture model SSDMM. The proposed approach includes the following steps: the extraction of robust local descriptors, the learning of the developed mixture model via the expectation–maximization (EM) algorithm, and finally the building of three SVM kernels for data categorization and classification. The potential of the implemented framework is illustrated through two challenging problems that concern the categorization of retinal images into normal or diabetic cases and the recognition of lung diseases in chest X-rays (CXR) images. The obtained results demonstrate the merits of our hybrid approach as compared to other methods.


Sign in / Sign up

Export Citation Format

Share Document