A Multi-Feature Nonlinear-SVM Seizure Detection Algorithm with Patient-Specific Channel Selection and Feature Customization

Author(s):  
M. Reza Karimi ◽  
Hossein Kassiri
Algorithms ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 176
Author(s):  
Amirsalar Mansouri ◽  
Sanjay P. Singh ◽  
Khalid Sayood

Epilepsy is one of the three most prevalent neurological disorders. A significant proportion of patients suffering from epilepsy can be effectively treated if their seizures are detected in a timely manner. However, detection of most seizures requires the attention of trained neurologists—a scarce resource. Therefore, there is a need for an automatic seizure detection capability. A tunable non-patient-specific, non-seizure-specific method is proposed to detect the presence and locality of a seizure using electroencephalography (EEG) signals. This multifaceted computational approach is based on a network model of the brain and a distance metric based on the spectral profiles of EEG signals. This computationally time-efficient and cost-effective automated epileptic seizure detection algorithm has a median latency of 8 s, a median sensitivity of 83%, and a median false alarm rate of 2.9%. Hence, it is capable of being used in portable EEG devices to aid in the process of detecting and monitoring epileptic patients.


Author(s):  
Seungjun Ryu ◽  
Seunghyeok Back ◽  
Seongju Lee ◽  
Hyeon Seo ◽  
Chanki Park ◽  
...  

2011 ◽  
Vol 70 ◽  
pp. 135-135 ◽  
Author(s):  
E Low ◽  
N J Stevenson ◽  
A Temko ◽  
G Lightbody ◽  
W P Marnane ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7972
Author(s):  
Jee S. Ra ◽  
Tianning Li ◽  
Yan Li

The key research aspects of detecting and predicting epileptic seizures using electroencephalography (EEG) signals are feature extraction and classification. This paper aims to develop a highly effective and accurate algorithm for seizure prediction. Efficient channel selection could be one of the solutions as it can decrease the computational loading significantly. In this research, we present a patient-specific optimization method for EEG channel selection based on permutation entropy (PE) values, employing K nearest neighbors (KNNs) combined with a genetic algorithm (GA) for epileptic seizure prediction. The classifier is the well-known support vector machine (SVM), and the CHB-MIT Scalp EEG Database is used in this research. The classification results from 22 patients using the channels selected to the patient show a high prediction rate (average 92.42%) compared to the SVM testing results with all channels (71.13%). On average, the accuracy, sensitivity, and specificity with selected channels are improved by 10.58%, 23.57%, and 5.56%, respectively. In addition, four patient cases validate over 90% accuracy, sensitivity, and specificity rates with just a few selected channels. The corresponding standard deviations are also smaller than those used by all channels, demonstrating that tailored channels are a robust way to optimize the seizure prediction.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pawel Glaba ◽  
Miroslaw Latka ◽  
Małgorzata J. Krause ◽  
Sławomir Kroczka ◽  
Marta Kuryło ◽  
...  

Absence seizures are generalized nonmotor epileptic seizures with abrupt onset and termination. Transient impairment of consciousness and spike-slow wave discharges (SWDs) in EEG are their characteristic manifestations. This type of seizure is severe in two common pediatric syndromes: childhood (CAE) and juvenile (JAE) absence epilepsy. The appearance of low-cost, portable EEG devices has paved the way for long-term, remote monitoring of CAE and JAE patients. The potential benefits of this kind of monitoring include facilitating diagnosis, personalized drug titration, and determining the duration of pharmacotherapy. Herein, we present a novel absence detection algorithm based on the properties of the complex Morlet continuous wavelet transform of SWDs. We used a dataset containing EEGs from 64 patients (37 h of recordings with almost 400 seizures) and 30 age and sex-matched controls (9 h of recordings) for development and testing. For seizures lasting longer than 2 s, the detector, which analyzed two bipolar EEG channels (Fp1-T3 and Fp2-T4), achieved a sensitivity of 97.6% with 0.7/h detection rate. In the patients, all false detections were associated with epileptiform discharges, which did not yield clinical manifestations. When the duration threshold was raised to 3 s, the false detection rate fell to 0.5/h. The overlap of automatically detected seizures with the actual seizures was equal to ~96%. For EEG recordings sampled at 250 Hz, the one-channel processing speed for midrange smartphones running Android 10 (about 0.2 s per 1 min of EEG) was high enough for real-time seizure detection.


2016 ◽  
Vol 13 (3) ◽  
pp. 036011 ◽  
Author(s):  
Steven Baldassano ◽  
Drausin Wulsin ◽  
Hoameng Ung ◽  
Tyler Blevins ◽  
Mesha-Gay Brown ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document