Non-blocking Gated Buffers for Energy Efficient on-chip Interconnects in the era of Dark Silicon

Author(s):  
Khushboo Rani ◽  
Sukarn Agarwal ◽  
Hemangee K. Kapoor
2017 ◽  
Vol 28 (7) ◽  
pp. 1905-1918 ◽  
Author(s):  
Lei Yang ◽  
Weichen Liu ◽  
Weiwen Jiang ◽  
Mengquan Li ◽  
Peng Chen ◽  
...  

Author(s):  
Iasonas Filippopoulos ◽  
Iraklis Anagnostopoulos ◽  
Alexandros Bartzas ◽  
Dimitrios Soudris ◽  
George Economakos

2012 ◽  
Vol 24 (24) ◽  
pp. 2296-2299 ◽  
Author(s):  
Zheng Chen ◽  
Huaxi Gu ◽  
Yintang Yang ◽  
Ke Chen

IOT-enabled sensors have been deployed in the wide area to perform various applications. Information security is an important aspect in wireless sensor networks. Since the attackers can be able to hack the information even at the node level, improved security mechanism have to be implemented. In this paper, nodal level security is done through dynamic encryption technique. The advantage of dynamic encryption is achieved by adaptive security. The proposed method involves a system-on-chip (SoC) design to provide a dynamically reconfigurable encryption methodology which leads to improved security level and also the energy efficiency. Dynamic encryption creates the confusion among the hackers about the tracking of security keys. The results shows that by dynamically selecting the encryption module through soft-core processor based on the available power budget, an energy efficient security solution is obtained for sensor nodes with reduced resources utilization.


Sign in / Sign up

Export Citation Format

Share Document