A tariff system for electric vehicle smart charging to increase renewable energy sources use

Author(s):  
Jean-Michel Clairand ◽  
Javier Rodriguez Garcia ◽  
Carlos Alvarez Bel ◽  
Patricio Pesantez Sarmiento
Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2193 ◽  
Author(s):  
Dominik Dominković ◽  
Greg Stark ◽  
Bri-Mathias Hodge ◽  
Allan Pedersen

Although it can be complex to integrate variable renewable energy sources such as wind power and photovoltaics into an energy system, the potential benefits are large, as it can help reduce fuel imports, balance the trade, and mitigate the negative impacts in terms of climate change. In order to try to integrate a very large share of variable renewable energy sources into the energy system, an integrated energy planning approach was used, including ice storage in the cooling sector, a smart charging option in the transport sector, and an excess capacity of reverse osmosis technology that was utilised in order to provide flexibility to the energy system. A unit commitment and economic dispatch tool (PLEXOS) was used, and the model was run with both 5 min and 1 h time resolutions. The case study was carried out for a typical Caribbean island nation, based on data derived from measured data from Aruba. The results showed that 78.1% of the final electricity demand in 2020 was met by variable renewable energy sources, having 1.0% of curtailed energy in the energy system. The total economic cost of the modelled energy system was similar to the current energy system, dominated by the fossil fuel imports. The results are relevant for many populated islands and island nations.


Author(s):  
A. Dominic Savio ◽  
Vimala Juliet A.

Electric vehicle (EV) charging station powered by the scattered energy sources with DC Nanogrid (NG) provides an option for uninterrupted charging. The NG powered by the renewable energy sources (RES) of photovoltaic (PV) and wind energy. When the excess power produced by the renewable energy stored in the local energy storage unit (ESU) utilized during shortage power from the renewable sources. During the overloading of NG and demand of energy in ESU; the mobile charging station (MCS) provides an uninterrupted charging. The MCS provides an option for battery swapping and vehicle to grid feasibility. The MCS required to monitor the state of charge (SOC) and state of health (SOH) of the battery. Monitoring of SOC and SOH related to the various battery parameters like voltage, current and temperature. A laboratory prototype is developed and tested the practical possibility of EV to NG and Internet of things (IoT) based monitoring of battery parameters.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012117
Author(s):  
Raghunath Niharika ◽  
K M Sai Pavan ◽  
P V Manitha

Abstract Climate change is a growing concern due to greenhouse gas emission and transportation has increased the requirement for various energy sources with limiting and less pollution. But with the establishment of more electric vehicles on the road, charging EV’s will be difficult if the grid is used. When many numbers of electric vehicles are integrated to the grid, it will inevitably have a huge effect on its function and control. Hence, there is a requirement for an effective charging system for electric vehicles using renewable energy sources. Solar energy is renewable and green, but the volatile nature of energy from the Photo-Voltaic (PV) system and dynamic charging requirement of electric vehicles has added new problems to the effective charging of EV from these sources. The Solar powered charging station with battery storage system is a better solution for this problem. The power is transferred from the AC grid to the DC link when there is a depletion of power from solar. This paper deals with DC level 1 fast charger to charge an electric vehicle with phase shifted full bridge converter as a main charging topology which is able to deliver the load of 50KW to charge the electric vehicle. To maintain a constant voltage at the output of the boost converter connected to the solar panel, a fuzzy controller is also developed in the proposed system


Sign in / Sign up

Export Citation Format

Share Document