Consensus-based distributed cooperative control for microgrid voltage regulation and reactive power sharing

Author(s):  
Dawei He ◽  
Di Shi ◽  
Ratnesh Sharma
2020 ◽  
Vol 14 (7) ◽  
pp. 1366-1377
Author(s):  
Mohsen Eskandari ◽  
Li Li ◽  
Mohammad H. Moradi ◽  
Pierluigi Siano ◽  
Frede Blaabjerg

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 399
Author(s):  
Mahmuda Begum ◽  
Mohsen Eskandari ◽  
Mohammad Abuhilaleh ◽  
Li Li ◽  
Jianguo Zhu

This research suggests a novel distributed cooperative control methodology for a secondary controller in islanded microgrids (MGs). The proposed control technique not only brings back the frequency/voltage to its reference values, but also maintains precise active and reactive power-sharing among distributed generation (DG) units by means of a sparse communication system. Due to the dynamic behaviour of distributed secondary control (DSC), stability issues are a great concern for a networked MG. To address this issue, the stability analysis is undertaken systematically, utilizing the small-signal state-space linearized model of considering DSC loops and parameters. As the dynamic behaviour of DSC creates new oscillatory modes, an intelligent fuzzy logic-based parameter-tuner is proposed for enhancing the system stability. Accurate tuning of the DSC parameters can develop the functioning of the control system, which increases MG stability to a greater extent. Moreover, the performance of the offered control method is proved by conducting a widespread simulation considering several case scenarios in MATLAB/Simscape platform. The proposed control method addresses the dynamic nature of the MG by supporting the plug-and-play functionality, and working even in fault conditions. Finally, the convergence and comparison study of the offered control system is shown.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6490
Author(s):  
Muhammad Zahid Khan ◽  
Chaoxu Mu ◽  
Salman Habib ◽  
Khurram Hashmi ◽  
Emad M. Ahmed ◽  
...  

This paper presents an optimal control scheme for an islanded microgrid (MG), which performs reactive power-sharing and voltage regulation. Two-fold objectives are achieved, i.e., the load estimation strategy, firstly, approximates the MG’s impedance and transmits this information through a communication link. Based on approximated impedance information, an optimal regulator is then constructed to send optimal control commands to respective local power controllers of each distributed generation unit. An optimal regulator is a constraints optimized problem, mainly responsible to restore the buses’ voltage magnitudes and realize power-sharing proportionally. The important aspect of this control approach is that the voltage magnitude information is only required to be transferred to each inverter’s controller. In parallel, a secondary control layer for frequency restoration is implemented to minimize the system frequency deviations. The MATLAB/Simulink and experimental results obtained under load disturbances show the effectiveness for optimizing the voltage and power. Modeling and analysis are also verified through stability analysis using system-wide mathematical small-signal models.


2016 ◽  
Vol 19 (1) ◽  
pp. 5-19
Author(s):  
Phuong Minh Le ◽  
Huy Minh Nguyen ◽  
Hoa Thi Xuan Pham ◽  
Tho Quang Tran

This paper presents a new load sharing technique for parallel-connected three-phase inverters in Standelone Microgrid. The paper proposed improvements droop controller to accurate load share by ratio with rated power of the inverter. In addition, the proposed scheme ensures reduced load voltage droop due to the load and droop. In the paper, the active power and reactive power are divided by voltage regulation under reference voltage in conditions of stark difference between line impedances, In addition the paper presents the ability to overcome the disadvantages of traditional droop scheme. The proposed model is simulated by Matlab-Simulink for 3 parallel-connected threephase inverters. The simulation results proved the technical soundness and advantages of the proposed in comparision with a tradition scheme even if the output impedance is resistance reactance in power sharing and load voltage drop reduce problems.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6092 ◽  
Author(s):  
Muhammad Zahid Khan ◽  
Chaoxu Mu ◽  
Salman Habib ◽  
Waleed Alhosaini ◽  
Emad M. Ahmed

Even the simplest version of the distribution networks face challenges such as maintaining load voltage and system frequency stability and at the same time minimizing the circulating reactive power in grid-forming nodes. As the consumers at the far end of the radial distribution network face serious voltage fluctuations and deviations once the load varies. Therefore, this paper presents an enhanced distributed control strategy to restore the load voltage magnitude and to realize power-sharing proportionally in islanded microgrids. This proposed study considers the voltage regulation at the load node as opposed to the inverter terminal. At the same time, a supervisory control layer is put on to observe and correct the load voltage and system frequency deviations. This presented method is aimed at replacing paralleled inverter control methods hitherto used. Stability analysis using system-wide methodical small-signal models, the MATLAB/Simulink, and experimental results obtained with conventional and proposed control schemes verify the effectiveness of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document