Three-phase OPF Based Local Flexibility Market for Mitigating Unbalanced Voltage in Distribution Systems

Author(s):  
Jiabin Fan ◽  
Ivana Kockar
2019 ◽  
Vol 22 (3) ◽  
Author(s):  
Ivo Benitez Cattani

In this paper two reconfiguration methodologies for three-phase electric power distribution systems based on multi-objective optimization algorithms are developed in order to simultaneously optimize two objective functions, (1) power losses and (2) three-phase unbalanced voltage minimization. The proposed optimization involves only radial topology configurations which is the most common configuration in electric distribution systems. The formulation of the problem considers the radiality as a constraint, increasing the computational complexity. The Prim and Kruskal algorithms are tested to fix infeasible configurations. In distribution systems, the three-phase unbalanced voltage and power losses limit the power supply to the loads and may even cause overheating in distribution lines, transformers and other equipment. An alternative to solve this problem is through a reconfiguration process, by opening and/or closing switches altering the distribution system configuration under operation. Hence, in this work the three-phase unbalanced voltage and power losses in radial distribution systems are addressed as a multi-objective optimization problem, firstly, using a method based on weighted sum; and, secondly, implementing NSGA-II algorithm. An example of distribution system is presented to prove the effectiveness of the proposed method.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1327 ◽  
Author(s):  
Thiago Soares ◽  
Ubiratan Bezerra ◽  
Maria Tostes

This paper proposes the development of a three-phase state estimation algorithm, which ensures complete observability for the electric network and a low investment cost for application in typical electric power distribution systems, which usually exhibit low levels of supervision facilities and measurement redundancy. Using the customers´ energy bills to calculate average demands, a three-phase load flow algorithm is run to generate pseudo-measurements of voltage magnitudes, active and reactive power injections, as well as current injections which are used to ensure the electrical network is full-observable, even with measurements available at only one point, the substation-feeder coupling point. The estimation process begins with a load flow solution for the customers´ average demand and uses an adjustment mechanism to track the real-time operating state to calculate the pseudo-measurements successively. Besides estimating the real-time operation state the proposed methodology also generates nontechnical losses estimation for each operation state. The effectiveness of the state estimation procedure is demonstrated by simulation results obtained for the IEEE 13-bus test network and for a real urban feeder.


Sign in / Sign up

Export Citation Format

Share Document