Three-Dimensional Photography Using a Single Digital Camera in an Automated Material-Handling Facility

Author(s):  
Gerrit Jordaan ◽  
Karel van der Walt
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Na Liu

Objective. To explore the application of 3D image technology in motor and sensory nerve classification. Methods. A total of 200 sections of the 5cm-long popliteal fossa peroneal nerve from adult volunteers were cut and frozen. The slices were 10 m thick, and the interval between the slices was 0.25 mm. Acetylcholinesterase histochemical staining was used to observe the changes of nerve bundles under the microscope. The stained sections were transformed into digital images by the digital camera system, and the images were stitched to obtain a two-dimensional panoramic image 100 times magnified. The properties of the functional bundles were manually judged. Using Amira 3.1 three‐dimensional reconstruction software to realize the three-dimensional reconstruction and visualization of nerve can not only accurately perceive the complex three-dimensional surface structure of nerve, but also arbitrarily display, rotate, scale, and segment the three-dimensional structure inside nerve, and carry out three-dimensional measurement in time. It has made preliminary achievements in brachial plexus, lumbosacral plexus, neural stem functional bundle (group), and intramuscular nerve routing and distribution, including the regeneration process of sensory nerve and three-dimensional reconstruction and visualization of composite tissue containing sensory nerve. Conclusion. Based on histology and computer technology, the functional band of short peroneal nerve can be reconstructed in 3D, which provides a feasible basis for the three-dimensional reconstruction of the functional band of the long peripheral nerve.


Author(s):  
Gary A. Mirka ◽  
Ann Baker

The goal of this study was to quantify the variability of the three-dimensional kinematic and kinetic parameters describing the motion of the torso during the performance of sagittally symmetric lifting tasks. Subjects performed eight repetitions of simple lifting tasks described by three levels of coupling (poor, fair and good) and seven levels of load (4.5, 9, 13.5, 18, 22.5, 27 and 31.5 kg). The three-dimensional, time dependent position, velocity and acceleration of the lumbar spine were monitored using the Lumbar Motion Monitor. These measures were then input into a dynamic biomechanical model which calculated torque about the L5/S1 joint in the sagittal plane. The results of the kinematic analysis showed significant variability in the magnitude of the peak velocity and acceleration in the sagittal plane and also showed significant motion in the transverse and coronal planes. The kinetic analysis showed an increase in the variability of the peak dynamic torque with greater levels of load but no coupling effect.


Sign in / Sign up

Export Citation Format

Share Document