scholarly journals Application of 3D Image Technology in Motor and Sensory Nerve Classification

2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Na Liu

Objective. To explore the application of 3D image technology in motor and sensory nerve classification. Methods. A total of 200 sections of the 5cm-long popliteal fossa peroneal nerve from adult volunteers were cut and frozen. The slices were 10 m thick, and the interval between the slices was 0.25 mm. Acetylcholinesterase histochemical staining was used to observe the changes of nerve bundles under the microscope. The stained sections were transformed into digital images by the digital camera system, and the images were stitched to obtain a two-dimensional panoramic image 100 times magnified. The properties of the functional bundles were manually judged. Using Amira 3.1 three‐dimensional reconstruction software to realize the three-dimensional reconstruction and visualization of nerve can not only accurately perceive the complex three-dimensional surface structure of nerve, but also arbitrarily display, rotate, scale, and segment the three-dimensional structure inside nerve, and carry out three-dimensional measurement in time. It has made preliminary achievements in brachial plexus, lumbosacral plexus, neural stem functional bundle (group), and intramuscular nerve routing and distribution, including the regeneration process of sensory nerve and three-dimensional reconstruction and visualization of composite tissue containing sensory nerve. Conclusion. Based on histology and computer technology, the functional band of short peroneal nerve can be reconstructed in 3D, which provides a feasible basis for the three-dimensional reconstruction of the functional band of the long peripheral nerve.

2009 ◽  
Vol 24 (1_suppl) ◽  
pp. 100-112 ◽  
Author(s):  
Yi Zhang ◽  
Jian Qi ◽  
Xiaolin Liu ◽  
Zuo Xiong ◽  
Shengjie Li ◽  
...  

The virtual human plan has been the hot point of recent research. The objective of this study is to explore the possibility of three-dimensional (3D) reconstruction of functional fascicular groups inside short segmental peripheral nerve. A 5 cm length of common peroneal nerve was horizontally sliced at 0.25 mm intervals, and each section was stained with acetycholinesterase histochemical staining. The 2D panorama images were acquired by high-resolution digital camera under 100 x microscope and mosaic software; different functional fascicular groups were distinguished and marked. The topographic database was then matched using image processing software, through the 3D reconstruction achieved using 3D reconstruction software (Amira 3.1). The reconstructed 3D images could be rotated or zoomed in any direction and the intercross and recombination processes of nerve bundles could be observed. Based on the serial histological sections and computer technology, the 3D microstructure of short segmental peripheral nerve functional fascicular groups was reconstructed. These results provide the possibility of 3D reconstruction of long segmental peripheral nerve functional fascicular groups.


1989 ◽  
Vol 108 (5) ◽  
pp. 1761-1774 ◽  
Author(s):  
N Q Cheng ◽  
J F Deatherage

The three-dimensional structure of the central region of the Z disk of honeybee flight muscle has been determined to a resolution of 70 A by three-dimensional reconstruction from electron micrographs of tilted thin sections. The reconstructions show a complex assembly in which actin filaments terminate and are cross-linked together; a number of structural domains of this network are resolved in quantitative three-dimensional detail. The central region of the Z disk contains two sets of overlapping actin filaments of opposite polarity, which originate in the sarcomeres adjacent to the Z disk, and connections between these filaments. The filaments are deflected by the attachment of cross-links; spacing between filaments change by greater than 100 A during their passage through the Z disk. Each actin filament is linked by connecting structures to four filaments of opposite polarity and two filaments are of the same polarity. Four types of connecting density domain are observed in association with pairs of filaments of opposite polarity: C1, C2, C3, and C5. Two of these, C3 and C5, are associated with the ends of actin filaments. Another connection, C4, is associated with three filaments of the same polarity; C4 is threefold symmetric.


2003 ◽  
Vol 74 (12) ◽  
pp. 5274-5281 ◽  
Author(s):  
Ted D. Rupp ◽  
Russell J. Gehr ◽  
Scott Bucholtz ◽  
David L. Robbins ◽  
David B. Stahl ◽  
...  

2003 ◽  
Vol 03 (04) ◽  
pp. 567-587 ◽  
Author(s):  
Ryo Haraguchi ◽  
Naozo Sugimoto ◽  
Shigeru Eiho ◽  
Yoshio Ishida

This paper deals with a new method of three dimensional reconstruction of coronary arteries, by using the texture-mapping technique on a myocardial nuclear image. The bi-plane CAG images are texture-mapped onto a LV surface model which is pre-determined on a nuclear 3D image. By maximizing a matching degree between two mapped CAG images, registration between CAG and nuclear image is performed automatically. By taking only true images from the mapped CAG images, we can obtain 3D reconstructed coronary image on the LV surface model. This method has the great advantage that it is not necessary to extract the feature points, nor is there a need to identify the correspondence. The obtained images give us a clear understanding of the relation between the coronary artery and the function of the myocardium.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jing Yin ◽  
Jong Hoon Yang

In order to solve the problems of poor user experience and low human-computer interaction efficiency, this paper designs a 3D image virtual reconstruction system based on visual communication effects. First, the functional framework diagram and hardware structure diagram of the image 3D reconstruction system are given. Then, combined with the basic theory of visual communication design, the characteristics of different elements in the three-dimensional image system and reasonable visual communication forms are analyzed, and design principles are proposed to improve user experience and communication efficiency. After the input image is preprocessed by median filtering, a three-dimensional reconstruction algorithm based on the image sequence is used to perform a three-dimensional reconstruction of the preprocessed image. The performance of the designed system was tested in a comparison form. We optimize the original hardware structure, expand the clock module, and use the chip to improve the data processing efficiency; in the two-dimensional image; we read the main information, through data conversion, display it in three-dimensional form, select the feature area, extract the image feature, calculate the key physical coordinate points, complete the main code compilation, use visual communication technology to feed back the display visual elements to the 3D image, and complete the design of the 3D image virtual reconstruction system. The test results showed that the application of visual communication technology to the virtual reconstruction of 3D images can effectively remove noise and make the edge area of the image clear, which can meet the needs of users compared with the reconstruction results of the original system. Visual C++ and 3DMAX are used as the system design platform, and three-dimensional image visualization and roaming are realized through OpenGL. Experimental results show that the designed system has better reconstruction accuracy and user satisfaction.


2015 ◽  
Vol 370 (1666) ◽  
pp. 20140345 ◽  
Author(s):  
Peter B. Rosenthal

Elucidation of the structure of biological macromolecules and larger assemblies has been essential to understanding the roles they play in living processes. Methods for three-dimensional structure determination of biological assemblies from images recorded in the electron microscope were therefore a key development. In his paper published in Philosophical Transactions B in 1971, Crowther described new computational procedures applied to the first three-dimensional reconstruction of an icosahedral virus from images of virus particles preserved in negative stain. The method for determining the relative orientation of randomly oriented particles and combining their images for reconstruction exploited the high symmetry of the virus particle. Computational methods for image analysis have since been extended to include biological assemblies without symmetry. Further experimental advances, combined with image analysis, have led to the method of cryomicroscopy, which is now used by structural biologists to study the structure and dynamics of biological machines and assemblies in atomic detail. This commentary was written to celebrate the 350th anniversary of the journal Philosophical Transactions of the Royal Society .


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Mark Ellisman ◽  
Maryann Martone ◽  
Gabriel Soto ◽  
Eleizer Masliah ◽  
David Hessler ◽  
...  

Structurally-oriented biologists examine cells, tissues, organelles and macromolecules in order to gain insight into cellular and molecular physiology by relating structure to function. The understanding of these structures can be greatly enhanced by the use of techniques for the visualization and quantitative analysis of three-dimensional structure. Three projects from current research activities will be presented in order to illustrate both the present capabilities of computer aided techniques as well as their limitations and future possibilities.The first project concerns the three-dimensional reconstruction of the neuritic plaques found in the brains of patients with Alzheimer's disease. We have developed a software package “Synu” for investigation of 3D data sets which has been used in conjunction with laser confocal light microscopy to study the structure of the neuritic plaque. Tissue sections of autopsy samples from patients with Alzheimer's disease were double-labeled for tau, a cytoskeletal marker for abnormal neurites, and synaptophysin, a marker of presynaptic terminals.


Sign in / Sign up

Export Citation Format

Share Document