Regenerative vibration damping of a suspension system testbed

Author(s):  
R. Sabzehgar ◽  
M. Moallem
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Dali Lyu ◽  
Qichang Zhang ◽  
Kewei Lyu ◽  
Jiaxing Liu ◽  
Yulong Li

The dry friction structure is a commonly used vibration-damping method for railway vehicles. Insufficient vibration damping performance will cause excessive vibration of the vehicle, which is not conducive to the safety of the vehicle. However, the mechanism of vibration damping and the cause of clamping stagnation have not been well resolved. This paper uses the analytical method, numerical method, and finite element method to analyze the vertical dynamic characteristics of the simple suspension system with dry friction and demonstrates that the numerical method is an effective method to study the dry model. The conditions for the system to produce sticking events were analyzed by the numerical method. The analysis shows that the system's excitation is too small, which causes clamping stagnation to the system. The reduction of the wedge angle and the friction coefficient are conducive to eliminating sticking. A negative side frame angle is conducive to reducing the high-frequency energy of the excitation. Decreasing spring stiffness or increasing system mass to reduce system frequency can reduce sticking events. The mutual verification of different methods confirms the correctness of the analysis method and analyzes the cause of sticking or clamping stagnation from the mechanism, which provides a new idea for the design and improvement of the dry friction damping system of railway vehicle bogies.


Author(s):  
Xuedong Liu ◽  
Yong Guo ◽  
Zhewu Chen ◽  
Juchuan Dai ◽  
Qihui Lin ◽  
...  

The suspension test-rig is restricted by the compound swing motion of the load wheel in a high-speed tracked vehicle, and cannot test the damping performance for the suspension system of the high-speed tracked vehicle with the track. A vibration damping testing mechanism using vertical linkage to decouple the compound swing motion of the load wheel is proposed for suspension performance testing with the track. Using Hertz elastic contact theory to solve the stiffness coefficient between load wheel and excitation wheel, a virtual prototype model for vibration damping test mechanism with vertical linkage is established in ADAMS. Correctness of the virtual prototype model is verified by experiment. The motion decoupling ability of the vibration damping testing mechanism is verified by simulation. The dynamic characteristics for each pair of guide and slider in vibration damping testing mechanism are analyzed under the condition of maximum excitation force and displacement, and the selection criteria of slider and guide contained in the motion pair components are acquired. The mechanism decouples the compound swing motion of the load wheel successfully, and can make suspension system performance testing in high-precision for the high-speed tracked vehicle with track realized, playing an important role in parameters design and performance optimization for the high-speed tracked vehicle.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 977-983
Author(s):  
Koichi Oka ◽  
Kentaro Yamamoto ◽  
Akinori Harada

This paper proposes a new type of noncontact magnetic suspension system using two permanent magnets driven by rotary actuators. The paper aims to explain the proposed concept, configuration of the suspension system, and basic analyses for feasibility by FEM analyses. Two bar-shaped permanent magnets are installed as they are driven by rotary actuators independently. Attractive forces of two magnets act on the iron ball which is located under the magnets. Control of the angles of two magnets can suspend the iron ball stably without mechanical contact and changes the position of the ball. FEM analyses have been carried out for the arrangement of two permanent magnets and forces are simulated for noncontact suspension. Hence, successfully the required enough force against the gravity of the iron ball can be generated and controlled. Control of the horizontal force is also confirmed by the rotation of the permanent magnets.


Sign in / Sign up

Export Citation Format

Share Document