Stabilization of a DC electrical network via backstepping approach

Author(s):  
Djawad Hamache ◽  
Akram Fayaz ◽  
Emmanuel Godoy ◽  
Charif Karimi
2007 ◽  
Vol 30 (1) ◽  
pp. 17-24
Author(s):  
S. M. Allam ◽  
G. M. Atta ◽  
A. A. Abou El-Ela ◽  
A. A. El-Zefiawy

2021 ◽  
Vol 156 ◽  
pp. 107676
Author(s):  
Donghong Ning ◽  
Haiping Du ◽  
Nong Zhang ◽  
Zhijuan Jia ◽  
Weihua Li ◽  
...  

2021 ◽  
pp. 1-27
Author(s):  
D. Sartori ◽  
F. Quagliotti ◽  
M.J. Rutherford ◽  
K.P. Valavanis

Abstract Backstepping represents a promising control law for fixed-wing Unmanned Aerial Vehicles (UAVs). Its non-linearity and its adaptation capabilities guarantee adequate control performance over the whole flight envelope, even when the aircraft model is affected by parametric uncertainties. In the literature, several works apply backstepping controllers to various aspects of fixed-wing UAV flight. Unfortunately, many of them have not been implemented in a real-time controller, and only few attempt simultaneous longitudinal and lateral–directional aircraft control. In this paper, an existing backstepping approach able to control longitudinal and lateral–directional motions is adapted for the definition of a control strategy suitable for small UAV autopilots. Rapidly changing inner-loop variables are controlled with non-adaptive backstepping, while slower outer loop navigation variables are Proportional–Integral–Derivative (PID) controlled. The controller is evaluated through numerical simulations for two very diverse fixed-wing aircraft performing complex manoeuvres. The controller behaviour with model parametric uncertainties or in presence of noise is also tested. The performance results of a real-time implementation on a microcontroller are evaluated through hardware-in-the-loop simulation.


2020 ◽  
pp. 0309524X2098177
Author(s):  
Mohamed Metwally Mahmoud ◽  
Hossam S Salama ◽  
Mohamed M Aly ◽  
Abdel-Moamen M Abdel-Rahim

Fault ride-through (FRT) capability enhancement for the growth of renewable energy generators has become a crucial issue for their incorporation into the electricity grid to provide secure, reliable, and efficient electricity. This paper presents a new FRT capability scheme for a permanent magnet synchronous generator (PMSG)-based wind energy generation system using a hybrid solution. The hybrid solution is a combination of a braking chopper (BC) and a fuzzy logic controller (FLC). All proportional-integral (PI) controllers which control the generator and grid side converters are replaced with FLC. Moreover, a BC system is connected to the dc link to improve the dynamic response of the PMSG during fault conditions. The PMSG was evaluated on a three-phase fault that occurs on an electrical network in three scenarios. In the first two scenarios, a BC is used with a PI controller and FLC respectively. While the third scenario uses only FLC without a BC. The obtained results showed that the suggested solution can not only enhance the FRT capability of the PMSG but also can diminish the occurrence of hardware systems and reduce their impact on the PMSG system. The simulation tests are performed using MATLAB/SIMULINK software.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Raphael Anaadumba ◽  
Qi Liu ◽  
Bockarie Daniel Marah ◽  
Francis Mawuli Nakoty ◽  
Xiaodong Liu ◽  
...  

AbstractEnergy forecasting using Renewable energy sources (RESs) is gradually gaining weight in the research field due to the benefits it presents to the modern-day environment. Not only does energy forecasting using renewable energy sources help mitigate the greenhouse effect, it also helps to conserve energy for future use. Over the years, several methods for energy forecasting have been proposed, all of which were more concerned with the accuracy of the prediction models with little or no considerations to the operating environment. This research, however, proposes the uses of Deep Neural Network (DNN) for energy forecasting on mobile devices at the edge of the network. This ensures low latency and communication overhead for all energy forecasting operations since they are carried out at the network periphery. Nevertheless, the cloud would be used as a support for the mobile devices by providing permanent storage for the locally generated data and a platform for offloading resource-intensive computations that exceed the capabilities of the local mobile devices as well as security for them. Electrical network topology was proposed which allows seamless incorporation of multiple RESs into the distributed renewable energy source (D-RES) network. Moreover, a novel grid control algorithm that uses the forecasting model to administer a well-coordinated and effective control for renewable energy sources (RESs) in the electrical network is designed. The electrical network was simulated with two RESs and a DNN model was used to create a forecasting model for the simulated network. The model was trained using a dataset from a solar power generation company in Belgium (elis) and was experimented with a different number of layers to determine the optimum architecture for performing the forecasting operations. The performance of each architecture was evaluated using the mean square error (MSE) and the r-square.


Sign in / Sign up

Export Citation Format

Share Document