MULTIDIMENSIONAL OPTIMIZATION WITH A GIVEN DISTRIBUTION OF RANKED VARIABLES FOR REDUCTIONG ELECTRICAL LOSSES IN THE ELECTRICAL NETWORK

2016 ◽  
Vol 2016 (1) ◽  
pp. 67-72
Author(s):  
І. Trach ◽  
◽  
I. Sevastjuk ◽  
2007 ◽  
Vol 30 (1) ◽  
pp. 17-24
Author(s):  
S. M. Allam ◽  
G. M. Atta ◽  
A. A. Abou El-Ela ◽  
A. A. El-Zefiawy

2021 ◽  
Vol 156 ◽  
pp. 107676
Author(s):  
Donghong Ning ◽  
Haiping Du ◽  
Nong Zhang ◽  
Zhijuan Jia ◽  
Weihua Li ◽  
...  

2020 ◽  
pp. 0309524X2098177
Author(s):  
Mohamed Metwally Mahmoud ◽  
Hossam S Salama ◽  
Mohamed M Aly ◽  
Abdel-Moamen M Abdel-Rahim

Fault ride-through (FRT) capability enhancement for the growth of renewable energy generators has become a crucial issue for their incorporation into the electricity grid to provide secure, reliable, and efficient electricity. This paper presents a new FRT capability scheme for a permanent magnet synchronous generator (PMSG)-based wind energy generation system using a hybrid solution. The hybrid solution is a combination of a braking chopper (BC) and a fuzzy logic controller (FLC). All proportional-integral (PI) controllers which control the generator and grid side converters are replaced with FLC. Moreover, a BC system is connected to the dc link to improve the dynamic response of the PMSG during fault conditions. The PMSG was evaluated on a three-phase fault that occurs on an electrical network in three scenarios. In the first two scenarios, a BC is used with a PI controller and FLC respectively. While the third scenario uses only FLC without a BC. The obtained results showed that the suggested solution can not only enhance the FRT capability of the PMSG but also can diminish the occurrence of hardware systems and reduce their impact on the PMSG system. The simulation tests are performed using MATLAB/SIMULINK software.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Raphael Anaadumba ◽  
Qi Liu ◽  
Bockarie Daniel Marah ◽  
Francis Mawuli Nakoty ◽  
Xiaodong Liu ◽  
...  

AbstractEnergy forecasting using Renewable energy sources (RESs) is gradually gaining weight in the research field due to the benefits it presents to the modern-day environment. Not only does energy forecasting using renewable energy sources help mitigate the greenhouse effect, it also helps to conserve energy for future use. Over the years, several methods for energy forecasting have been proposed, all of which were more concerned with the accuracy of the prediction models with little or no considerations to the operating environment. This research, however, proposes the uses of Deep Neural Network (DNN) for energy forecasting on mobile devices at the edge of the network. This ensures low latency and communication overhead for all energy forecasting operations since they are carried out at the network periphery. Nevertheless, the cloud would be used as a support for the mobile devices by providing permanent storage for the locally generated data and a platform for offloading resource-intensive computations that exceed the capabilities of the local mobile devices as well as security for them. Electrical network topology was proposed which allows seamless incorporation of multiple RESs into the distributed renewable energy source (D-RES) network. Moreover, a novel grid control algorithm that uses the forecasting model to administer a well-coordinated and effective control for renewable energy sources (RESs) in the electrical network is designed. The electrical network was simulated with two RESs and a DNN model was used to create a forecasting model for the simulated network. The model was trained using a dataset from a solar power generation company in Belgium (elis) and was experimented with a different number of layers to determine the optimum architecture for performing the forecasting operations. The performance of each architecture was evaluated using the mean square error (MSE) and the r-square.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Yanrenthung Odyuo ◽  
Dipu Sarkar ◽  
Lilika Sumi

Abstract The development and planning of optimal network reconfiguration strategies for electrical networks is greatly improved with proper application of graph theory techniques. This paper investigates the application of Kruskal's maximal spanning tree algorithm in finding the optimal radial networks for different loading scenarios from an interconnected meshed electrical network integrated with distributed generation (DG). The work is done with an objective to assess the prowess of Kruskal's algorithm to compute, obtain or derive an optimal radial network (optimal maximal spanning tree) that gives improved voltage stability and highest loss minimization from among all the possible radial networks obtainable from the DG-integrated mesh network for different time-varying loading scenarios. The proposed technique has been demonstrated on a multiple test systems considering time-varying load levels to investigate the performance and effectiveness of the suggested method. For interconnected electrical networks with the presence of distributed generation, it was found that application of Kruskal's algorithm quickly computes optimal radial configurations that gives the least amount of power losses and better voltage stability even under varying load conditions. Article Highlights Investigated network reconfiguration strategies for electrical networks with the presence of Distributed Generation for time-varying loading conditions. Investigated the application of graph theory techniques in electrical networks for developing and planning reconfiguration strategies. Applied Kruskal’s maximal spanning tree algorithm to obtain the optimal radial electrical networks for different loading scenarios from DG-integrated meshed electrical network.


Sign in / Sign up

Export Citation Format

Share Document