scholarly journals Validation of a Hybrid Electric Vehicle dynamics model for energy management and vehicle stability control

Author(s):  
K. Reeves ◽  
A. Montazeri ◽  
C.J. Tayor
2007 ◽  
Vol 120 ◽  
pp. 223-228
Author(s):  
Dong Hyun Kim ◽  
Sung Ho Hwang ◽  
Hyun Soo Kim

Vehicle stability in 4 wheel drive(4WD) vehicles has been pursued by torque split based technology and brake based technology. The brake based methods are essentially brake maneuver strategies using the active control of the individual wheel brake. By comparison, the torque split based technologies realize stability by varying the traction torque split through powertrain to create an offset yaw moment. In the 4WD hybrid electric vehicle adopting separate front and rear motor, the vehicle stability enhancement algorithm using the rear motor control has some advantages such as faster response, braking energy recuperation, etc. However, since the left and right wheels are controlled by the same driving and regenerative torque from one motor, stability enhancement only by the front and rear motor control has a limitation in satisfying the required offset yaw moment. Therefore, to obtain the demanded offset yaw moment, a brake force distribution at each wheel is required. In this paper, a vehicle stability control logic using the front and rear motor and electrohydraulic brake(EHB) is proposed for a 4WD hybrid electric vehicle. A fuzzy control algorithm is suggested to compensate the error of the sideslip angle and the yaw rate by generating the direct yaw moment. Performance of the vehicle stability control algorithm is evaluated using ADAMS and MATLAB Simulink co-simulation.


Energies ◽  
2018 ◽  
Vol 11 (6) ◽  
pp. 1537 ◽  
Author(s):  
Xiaohua Zeng ◽  
Haoyong Cui ◽  
Dafeng Song ◽  
Nannan Yang ◽  
Tong Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document