scholarly journals Data-driven Thermal Anomaly Detection for Batteries using Unsupervised Shape Clustering

Author(s):  
Xiaojun Li ◽  
Jianwei Li ◽  
Ali Abdollahi ◽  
Trevor Jones
Author(s):  
Juan Luis Pérez-Ruiz ◽  
Igor Loboda ◽  
Iván González-Castillo ◽  
Víctor Manuel Pineda-Molina ◽  
Karen Anaid Rendón-Cortés ◽  
...  

The present paper compares the fault recognition capabilities of two gas turbine diagnostic approaches: data-driven and physics-based (a.k.a. gas path analysis, GPA). The comparison takes into consideration two differences between the approaches, the type of diagnostic space and diagnostic decision rule. To that end, two stages are proposed. In the first one, a data-driven approach with an artificial neural network (ANN) that recognizes faults in the space of measurement deviations is compared with a hybrid GPA approach that employs the same type of ANN to recognize faults in the space of estimated fault parameter. Different case studies for both anomaly detection and fault identification are proposed to evaluate the diagnostic spaces. They are formed by varying the classification, type of diagnostic analysis, and deviation noise scheme. In the second stage, the original GPA is reconstructed replacing the ANN with a tolerance-based rule to make diagnostic decisions. Here, two aspects are under analysis: the comparison of GPA classification rules and whole approaches. The results reveal that for simple classifications both spaces are equally accurate for anomaly detection and fault identification. However, for complex scenarios, the data-driven approach provides on average slightly better results for fault identification. The use of a hybrid GPA with ANN for a full classification instead of an original GPA with tolerance-based rule causes an increase of 12.49% in recognition accuracy for fault identification and up to 54.39% for anomaly detection. As for the whole approach comparison, the application of a data-driven approach instead of the original GPA can lead to an improvement of 12.14% and 53.26% in recognition accuracy for fault identification and anomaly detection, respectively.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Rony Chowdhury Ripan ◽  
Iqbal H. Sarker ◽  
Syed Md. Minhaz Hossain ◽  
Md. Musfique Anwar ◽  
Raza Nowrozy ◽  
...  

2021 ◽  
Vol 303 ◽  
pp. 117656
Author(s):  
Maitreyee Dey ◽  
Soumya Prakash Rana ◽  
Clarke V. Simmons ◽  
Sandra Dudley

Author(s):  
Julio Galvan ◽  
Ashok Raja ◽  
Yanyan Li ◽  
Jiawei Yuan

Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1882
Author(s):  
Sheraz Naseer ◽  
Rao Faizan Ali ◽  
P.D.D Dominic ◽  
Yasir Saleem

Oil and Gas organizations are dependent on their IT infrastructure, which is a small part of their industrial automation infrastructure, to function effectively. The oil and gas (O&G) organizations industrial automation infrastructure landscape is complex. To perform focused and effective studies, Industrial systems infrastructure is divided into functional levels by The Instrumentation, Systems and Automation Society (ISA) Standard ANSI/ISA-95:2005. This research focuses on the ISA-95:2005 level-4 IT infrastructure to address network anomaly detection problem for ensuring the security and reliability of Oil and Gas resource planning, process planning and operations management. Anomaly detectors try to recognize patterns of anomalous behaviors from network traffic and their performance is heavily dependent on extraction time and quality of network traffic features or representations used to train the detector. Creating efficient representations from large volumes of network traffic to develop anomaly detection models is a time and resource intensive task. In this study we propose, implement and evaluate use of Deep learning to learn effective Network data representations from raw network traffic to develop data driven anomaly detection systems. Proposed methodology provides an automated and cost effective replacement of feature extraction which is otherwise a time and resource intensive task for developing data driven anomaly detectors. The ISCX-2012 dataset is used to represent ISA-95 level-4 network traffic because the O&G network traffic at this level is not much different than normal internet traffic. We trained four representation learning models using popular deep neural network architectures to extract deep representations from ISCX 2012 traffic flows. A total of sixty anomaly detectors were trained by authors using twelve conventional Machine Learning algorithms to compare the performance of aforementioned deep representations with that of a human-engineered handcrafted network data representation. The comparisons were performed using well known model evaluation parameters. Results showed that deep representations are a promising feature in engineering replacement to develop anomaly detection models for IT infrastructure security. In our future research, we intend to investigate the effectiveness of deep representations, extracted using ISA-95:2005 Level 2-3 traffic comprising of SCADA systems, for anomaly detection in critical O&G systems.


Sign in / Sign up

Export Citation Format

Share Document