Efficient Energy and QoS Based Routing Algorithm for Wireless Body Area Network

Author(s):  
Afolabi K. Ojelade ◽  
Abdullahi A. Ibrahim ◽  
Oguz Ata
Electronics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 47 ◽  
Author(s):  
Faisal Jamil ◽  
Muhammad Azhar Iqbal ◽  
Rashid Amin ◽  
DoHyeun Kim

The recent advancement in information technology and evolving of the (IoT) shifted the traditional medical approach to patient-oriented approach (e.g., Telemedicine/Telemonitoring). IoT permits several services including sensing, processing and communicating information with physical and bio-medical constraints. Wireless Body Area Network (WBAN) handles the issues pertaining to the medical purposes in the form of sensor nodes and connected network. The WBAN takes human physiological data as an input to subsequently monitor the patient conditions that are transferred to other IoT components for analysis. Such monitoring and analysis demand a cohesive routing approach to ensure the safe and in-time transfer of data. The temperature rise of bio-medical sensor nodes makes the entire routing operation very crucial because the temperature of implanted nodes rises and ultimately damages body tissues. This needs dispersion in data transmission among different nodes by opting various available routes while avoiding temperature rise. In this paper, we present Adaptive Thermal-Aware Routing algorithm for WBAN. The ATAR is designed to overcome the temperature rise issue of implanted bio-medical sensors nodes. The new protocol is based on Multi-Ring Routing approach to find an alternative route in the case of increasing temperature. The simulation results indicate that proposed protocol is more efficient in terms of temperature rise and throughput than existing approaches.


2016 ◽  
Vol 12 (2) ◽  
pp. 7364910 ◽  
Author(s):  
Zhuoming Li ◽  
Zhenyu Xu ◽  
Shengge Mao ◽  
Xing Tong ◽  
Xuejun Sha

Author(s):  
Sondous Sulaiman Wali ◽  
Mohammed Najm Abdullah

<span>Compression sensing approaches have been used extensively with the idea of overcoming the limitations of traditional sampling theory and applying the concept of pressure during the sensing procedure. Great efforts have been made to develop methods that would allow data to be sampled in compressed form using a much smaller number of samples. Wireless body area networks (WBANs) have been developed by researchers through the creation of the network and the use of miniature equipment. Small structural factors, low power consumption, scalable data rates from kilobits per second to megabits per second, low cost, simple hardware deployment, and low processing power are needed to hold the wireless sensor through lightweight, implantable, and sharing communication tools wireless body area network. Thus, the proposed system provides a brief idea of the use of WBAN using IEEE 802.15.4 with compression sensing technologies. To build a health system that helps people maintain their health without going to the hospital and get more efficient energy through compression sensing, more efficient energy is obtained and thus helps the sensor battery last longer, and finally, the proposed health system will be more efficient energy, less energy-consuming, less expensive and more throughput.</span>


Sign in / Sign up

Export Citation Format

Share Document