Numerical studies of the flow over a circular cylinder at Reynolds number 3900 with overset mesh

Author(s):  
Beikun Wang ◽  
Jianlin Xu
2016 ◽  
Author(s):  
Mohammad Mobasher Amini ◽  
Antonio Carlos Fernandes

Numerous experimental and numerical studies have been carried out to better understand and to improve prediction of cylinder VIV (vortex Induced Vibration) phenomenon. The behavior of cylinder due to in-line vibration (VIVx) has been neglected in the earlier studies because of its lower amplitude in comparison with cross flow vibration (VIVy). However, some researchers have studied VIVx in 2DOF along with VIVy. Recent investigations show that response amplitude of structure caused by VIVx is large enough to bring it to consideration. This study focuses on understanding the origin and prediction of VIVx amplitude exclusively in 1DOF and subcritical flow regime. The experiments were performed in current channel on bare circular cylinder with low mass-damping ratio in Reynolds number range Re = 10000 ∼ 45000.


2014 ◽  
Author(s):  
M. Mobassher Tofa ◽  
Adi Maimun ◽  
Yasser M. Ahmed ◽  
Saeed Jamei ◽  
N.M. Khairuddin

2008 ◽  
Vol 20 (8) ◽  
pp. 085101 ◽  
Author(s):  
Philippe Parnaudeau ◽  
Johan Carlier ◽  
Dominique Heitz ◽  
Eric Lamballais

2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


Sign in / Sign up

Export Citation Format

Share Document