Behavioural scheduling to balance the bit-level computational effort

Author(s):  
M.C. Molina ◽  
R. Ruiz-Sautua ◽  
J.M. Mendias ◽  
R. Hermida
Keyword(s):  
Author(s):  
J. Gjønnes ◽  
N. Bøe ◽  
K. Gjønnes

Structure information of high precision can be extracted from intentsity details in convergent beam patterns like the one reproduced in Fig 1. From low order reflections for small unit cell crystals,bonding charges, ionicities and atomic parameters can be derived, (Zuo, Spence and O’Keefe, 1988; Zuo, Spence and Høier 1989; Gjønnes, Matsuhata and Taftø, 1989) , but extension to larger unit cell ma seem difficult. The disks must then be reduced in order to avoid overlap calculations will become more complex and intensity features often less distinct Several avenues may be then explored: increased computational effort in order to handle the necessary many-parameter dynamical calculations; use of zone axis intensities at symmetry positions within the CBED disks, as in Figure 2 measurement of integrated intensity across K-line segments. In the last case measurable quantities which are well defined also from a theoretical viewpoint can be related to a two-beam like expression for the intensity profile:With as an effective Fourier potential equated to a gap at the dispersion surface, this intensity can be integrated across the line, with kinematical and dynamical limits proportional to and at low and high thickness respctively (Blackman, 1939).


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2018 ◽  
Author(s):  
Shannon Houck ◽  
Nicholas Mayhall

<div>Many multiconfigurational systems, such as single-molecule magnets, are difficult to study using traditional computational methods due to the simultaneous existence of both spin and spatial degeneracies. In this work, a new approach termed n-spin-flip Ionization Potential/Electron Affinity (<i>n</i>SF-IP or <i>n</i>SF-EA) is introduced which combines the spin-flip method of Anna Krylov with particle-number changing IP/EA methods. We demonstrate the efficacy of the approach by applying it to the strongly-correlated N<sub>2</sub><sup>+</sup> as well as several double exchange systems. We also demonstrate that when these systems are well-described by a double exchange model Hamiltonian, only 1SF-IP/EA is required to extract the double exchange parameters and accurately predict energies for the low-spin states. This significantly reduces the computational effort for studying such systems. The effects of including additional excitations (using a RAS-<i>n</i>SF-IP/EA scheme) are also examined, with particular emphasis on hole and particle excitations.</div>


2019 ◽  
Author(s):  
Pier Paolo Poier ◽  
Louis Lagardere ◽  
Jean-Philip Piquemal ◽  
Frank Jensen

<div> <div> <div> <p>We extend the framework for polarizable force fields to include the case where the electrostatic multipoles are not determined by a variational minimization of the electrostatic energy. Such models formally require that the polarization response is calculated for all possible geometrical perturbations in order to obtain the energy gradient required for performing molecular dynamics simulations. </p><div> <div> <div> <p>By making use of a Lagrange formalism, however, this computational demanding task can be re- placed by solving a single equation similar to that for determining the electrostatic variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p><div><div><div> </div> </div> </div> <p> </p><div> <div> <div> <p>variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p> </div> </div> </div> </div> </div> </div> </div> </div> </div>


2008 ◽  
Vol 47 (02) ◽  
pp. 167-173 ◽  
Author(s):  
A. Pfahlberg ◽  
O. Gefeller ◽  
R. Weißbach

Summary Objectives: In oncological studies, the hazard rate can be used to differentiate subgroups of the study population according to their patterns of survival risk over time. Nonparametric curve estimation has been suggested as an exploratory means of revealing such patterns. The decision about the type of smoothing parameter is critical for performance in practice. In this paper, we study data-adaptive smoothing. Methods: A decade ago, the nearest-neighbor bandwidth was introduced for censored data in survival analysis. It is specified by one parameter, namely the number of nearest neighbors. Bandwidth selection in this setting has rarely been investigated, although the heuristical advantages over the frequently-studied fixed bandwidth are quite obvious. The asymptotical relationship between the fixed and the nearest-neighbor bandwidth can be used to generate novel approaches. Results: We develop a new selection algorithm termed double-smoothing for the nearest-neighbor bandwidth in hazard rate estimation. Our approach uses a finite sample approximation of the asymptotical relationship between the fixed and nearest-neighbor bandwidth. By so doing, we identify the nearest-neighbor bandwidth as an additional smoothing step and achieve further data-adaption after fixed bandwidth smoothing. We illustrate the application of the new algorithm in a clinical study and compare the outcome to the traditional fixed bandwidth result, thus demonstrating the practical performance of the technique. Conclusion: The double-smoothing approach enlarges the methodological repertoire for selecting smoothing parameters in nonparametric hazard rate estimation. The slight increase in computational effort is rewarded with a substantial amount of estimation stability, thus demonstrating the benefit of the technique for biostatistical applications.


Computation ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 38
Author(s):  
Franco Concli ◽  
Athanasios Kolios

Wind turbine gearboxes are known to be among the weakest components in the system and the possibility to study and understand the behavior of geared transmissions when subject to several types of faults might be useful to plan maintenance and eventually reduce the costs by preventing further damage. The aim of this work is to develop a high-fidelity numerical model of a single-stage planetary gearbox selected as representative and to evaluate its behavior in the presence of surface fatigue and tooth-root bending damage, i.e., pits and cracks. The planetary gearbox is almost entirely modelled, including shafts, gears as well as bearings with all the rolling elements. Stresses and strains in the most critical areas are analyzed to better evaluate if the presence of such damage can be somehow detected using strain gauges and where to place them to maximize the sensitivity of the measures to the damage. Several simulations with different levels, types and positions of the damage were performed to better understand the mutual relations between the damaged and the stress state. The ability to introduce the effect of the damage in the model of a gearbox represents the first indispensable step of a Structural Health Monitoring (SHM) strategy. The numerical activity was performed taking advantage of an innovative hybrid numerical–analytical approach that ensures a significant reduction of the computational effort. The developed model shows good sensitivity to the presence, type and position of the defects. For the studied configuration, the numerical results show clearly show a relation between the averaged rim stress and the presence of root cracks. Moreover, the presence of surface defects seems to produce local stress peaks (when the defects pass through the contact) in the instantaneous rim stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tim Kümmel ◽  
Björn van Marwick ◽  
Miriam Rittel ◽  
Carina Ramallo Guevara ◽  
Felix Wühler ◽  
...  

AbstractFrozen section analysis is a frequently used method for examination of tissue samples, especially for tumour detection. In the majority of cases, the aim is to identify characteristic tissue morphologies or tumour margins. Depending on the type of tissue, a high number of misdiagnoses are associated with this process. In this work, a fast spectroscopic measurement device and workflow was developed that significantly improves the speed of whole frozen tissue section analyses and provides sufficient information to visualize tissue structures and tumour margins, dependent on their lipid and protein molecular vibrations. That optical and non-destructive method is based on selected wavenumbers in the mid-infrared (MIR) range. We present a measuring system that substantially outperforms a commercially available Fourier Transform Infrared (FT-IR) Imaging system, since it enables acquisition of reduced spectral information at a scan field of 1 cm2 in 3 s, with a spatial resolution of 20 µm. This allows fast visualization of segmented structure areas with little computational effort. For the first time, this multiphotometric MIR system is applied to biomedical tissue sections. We are referencing our novel MIR scanner on cryopreserved murine sagittal and coronal brain sections, especially focusing on the hippocampus, and show its usability for rapid identification of primary hepatocellular carcinoma (HCC) in mouse liver.


Sign in / Sign up

Export Citation Format

Share Document