Crescent moon-shaped artificial magnetic conductor ground plane for patch antenna application

Author(s):  
R. Dewan ◽  
S. K. A. Rahim ◽  
S. F. Ausordin ◽  
M. Z. M. Nor ◽  
B. M. Saad
2014 ◽  
Vol 70 (1) ◽  
Author(s):  
Raimi Dewan ◽  
Sharul Kamal Abdul Rahim ◽  
Siti Fatimah Ausordin ◽  
Dyg Norkhairunnisa Abang Zaidel ◽  
Bashir Muhammad Sa’ad ◽  
...  

In this paper, a standalone patch antenna operating at 2.3 GHz is initially designed as a reference antenna. Subsequently, the patch antenna is incorporated with an Artificial Magnetic Conductor (AMC) as the ground plane to obtain an Antenna with Artificial Magnetic Conductor (AAMC). Performance comparison is analyzed between the standalone patch antenna and the AAMC. The incorporation of AMC to the patch antenna successfully enhances the bandwidth of the standalone patch antenna by 520%, increases gain by 2dBi, and boosts the efficiency up to 30 % as compared to the reference antenna. As a result of the bandwidth enhancement, the AAMC is capable to cover several frequency bands within 2.19 GHz to 2.5 GHz. Hence, the new design is suitable for WiMAX, WLAN and RFID applications. The measurement results in terms of return loss, gain and radiation patterns agreed satisfactorily with the simulated ones. Moreover, the parametric studies of antenna dimensions and air gap are presented and discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Oh Heon Kwon ◽  
Sungwoo Lee ◽  
Jong Min Lee ◽  
Keum Cheol Hwang

A compact and low-profile log-periodic meandered dipole array (LPMDA) antenna with an artificial magnetic conductor (AMC) is proposed. For compactness, a meander line configuration is implemented with dipole elements and optimized using a genetic algorithm (GA) to realize the LPMDA antenna. As a result, a size reduction of approximately 30% is achieved as compared to a conventional log-periodic dipole array antenna. To enhance the gain characteristics, the AMC ground plane configuration is realized with 9 × 9 unit cells for the LPMDA antenna. Two prototypes of the proposed LPMDA antennas with and without an AMC are fabricated and measured to verify its performance. The measured −10 dB reflection ratio bandwidths are 2.56 : 1 (0.85–2.18 GHz) and 2.34 : 1 (0.92–2.16 GHz) for the proposed LPMDA antennas with and without the AMC, respectively. The gain at the main beam direction within the operating frequency bandwidth is significantly improved from 3.94–7.17 dBi to 7.86–10.01 dBi by applying the AMC.


2020 ◽  
Vol 9 (1) ◽  
pp. 1722-1725

To improve the antenna characteristics in terms of bandwidth, gain and its radiation characteristics without providing any phase reflections, Artificial Magnetic Conductor (AMC) are used in antenna designing. This paper initially designed AMC structure for 2.4GHz frequency. The proposed AMC structure consists of three L shaped and inverted L shaped slots and provides zero degrees phase reflection at 2.4GHz resonant frequency. This proposed AMC structure is incorporated on conventional micro strip square patch antenna and results are simulated in High Frequency Structure Simulator (HFSS) software. The Proposed AMC incorporated patch antenna, return loss is improved from -16.16dB to -31.75dB, VSWR is from 1.42 to 1.05, the band width is increased from 16.5 MHz to 348.1 MHz This design resonates at a frequency of 2.4GHz and applicable to Wi-Fi applications.


Sign in / Sign up

Export Citation Format

Share Document