Classifying of Objectionable Contents with Various Audio Signal Features

Author(s):  
JaeDeok Lim ◽  
SeungWan Han ◽  
ByeongCheol Choi ◽  
ChoelHoon Lee ◽  
ByungHo Chung
Keyword(s):  
2015 ◽  
Vol 61 (1) ◽  
pp. 37-41
Author(s):  
Paweł Biernacki

Abstract The article presents information fusion approach for song classification with use of acoustic signal. Many acoustic features can contribute to correct identification of a song. Taking into consideration only one set of features may result in omission of relevant information. It is possible to improve the accuracy of identification process by means of the information fusion technique, in which various aspects of acoustic fingerprint are taken into consideration. Two sets of signal features were distinguished: one were based on frequency analysis (harmonic elements) and the other were based on multidimensional correlation ratios. An identification of a commercial was made with use of SVM and k-NN classifiers. The music audio signal database was used for assessing the effectiveness of the proposed solution. Results show an improved effectiveness of identification in relation to applying only one set of song features


2020 ◽  
Vol 64 (1-4) ◽  
pp. 47-55
Author(s):  
Takuma Tomizawa ◽  
Haicheng Song ◽  
Noritaka Yusa

This study proposes a probability of detection (POD) model to quantitatively evaluate the capability of eddy current testing to detect flaws on the inner surface of pressure vessels cladded by stainless steel and in the presence of high noise level. Welded plate samples with drill holes were prepared to simulate corrosion that typically appears on the inner surface of large-scale pressure vessels. The signals generated by the drill holes and the noise caused by the weld were examined using eddy current testing. A hit/miss-based POD model with multiple flaw parameters and multiple signal features was proposed to analyze the measured signals. It is shown that the proposed model is able to more reasonably characterize the detectability of eddy current signals compared to conventional models that consider a single signal feature.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Hsiuying Wang

High-dimensional data recognition problem based on the Gaussian Mixture model has useful applications in many area, such as audio signal recognition, image analysis, and biological evolution. The expectation-maximization algorithm is a popular approach to the derivation of the maximum likelihood estimators of the Gaussian mixture model (GMM). An alternative solution is to adopt a generalized Bayes estimator for parameter estimation. In this study, an estimator based on the generalized Bayes approach is established. A simulation study shows that the proposed approach has a performance competitive to that of the conventional method in high-dimensional Gaussian mixture model recognition. We use a musical data example to illustrate this recognition problem. Suppose that we have audio data of a piece of music and know that the music is from one of four compositions, but we do not know exactly which composition it comes from. The generalized Bayes method shows a higher average recognition rate than the conventional method. This result shows that the generalized Bayes method is a competitor to the conventional method in this real application.


2021 ◽  
Vol 11 (14) ◽  
pp. 6288
Author(s):  
Hang Su ◽  
Chang-Myung Lee

The generalized sidelobe canceller (GSC) method is a common algorithm to enhance audio signals using a microphone array. Distortion of the enhanced audio signal consists of two parts: the residual acoustic noise and the distortion of the desired audio signal, which means that the desired audio signal is damaged. This paper proposes a modified GSC method to reduce both kinds of distortion when the desired audio signal is a non-stationary speech signal. First, the cross-correlation coefficient between the canceling signal and the error signal of the least mean square (LMS) algorithm was added to the adaptive process of the GSC method to reduce the distortion of the enhanced signal while the energy of the desired signal frame was increased suddenly. The sidelobe pattern of beamforming was then presented to estimate the noise signal in the beamforming output signal of the GSC method. The noise component of the beamforming output signal was decreased by subtracting the estimated noise signal to improve the denoising performance of the GSC method. Finally, the GSC-SN-MCC method was proposed by merging the above two methods. The experiment was performed in an anechoic chamber to validate the proposed method in various SNR conditions. Furthermore, the simulated calculation with inaccurate noise directions was conducted based on the experiment data to inspect the robustness of the proposed method to the error of the estimated noise direction. The experiment data and calculation results indicated that the proposed method could reduce the distortion effectively under various SNR conditions and would not cause more distortion if the estimated noise direction is far from the actual noise direction.


2021 ◽  
Vol 11 (3) ◽  
pp. 1150
Author(s):  
Stephan Werner ◽  
Florian Klein ◽  
Annika Neidhardt ◽  
Ulrike Sloma ◽  
Christian Schneiderwind ◽  
...  

For a spatial audio reproduction in the context of augmented reality, a position-dynamic binaural synthesis system can be used to synthesize the ear signals for a moving listener. The goal is the fusion of the auditory perception of the virtual audio objects with the real listening environment. Such a system has several components, each of which help to enable a plausible auditory simulation. For each possible position of the listener in the room, a set of binaural room impulse responses (BRIRs) congruent with the expected auditory environment is required to avoid room divergence effects. Adequate and efficient approaches are methods to synthesize new BRIRs using very few measurements of the listening room. The required spatial resolution of the BRIR positions can be estimated by spatial auditory perception thresholds. Retrieving and processing the tracking data of the listener’s head-pose and position as well as convolving BRIRs with an audio signal needs to be done in real-time. This contribution presents work done by the authors including several technical components of such a system in detail. It shows how the single components are affected by psychoacoustics. Furthermore, the paper also discusses the perceptive effect by means of listening tests demonstrating the appropriateness of the approaches.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 27-27
Author(s):  
Ricardo V Ventura ◽  
Rafael Z Lopes ◽  
Lucas T Andrietta ◽  
Fernando Bussiman ◽  
Julio Balieiro ◽  
...  

Abstract The Brazilian gaited horse industry is growing steadily, even after a recession period that affected different economic sectors in the whole country. Recent numbers suggested an increase on the exports, which reveals the relevance of this horse market segment. Horses are classified according to the gait criteria, which divide the horses in two groups associated with the animal movements: lateral (Marcha Picada) or diagonal (Marcha_Batida). These two gait groups usually show remarkable differences related to speed and number of steps per fixed unit of time, among other factors. Audio retrieval refers to the process of information extraction obtained from audio signals. This new data analysis area, in comparison to traditional methods to evaluate and classify gait types (as, for example, human subjective evaluation and video monitoring), provides a potential method to collect phenotypes in a reduced cost manner. Audio files (n = 80) were obtained after extracting audio features from freely available YouTube videos. Videos were manually labeled according to the two gait groups (Marcha Picada or Marcha Batida) and thirty animals were used after a quality control filter step. This study aimed to investigate different metrics associated with audio signal processing, in order to first cluster animals according to the gait type and subsequently include additional traits that could be useful to improve accuracy during the identification of genetically superior animals. Twenty-eight metrics, based on frequency or physical audio aspects, were carried out individually or in groups of relative importance to perform Principal Component Analysis (PCA), as well as to describe the two gait types. The PCA results indicated that over 87% of the animals were correctly clustered. Challenges regarding environmental interferences and noises must be further investigated. These first findings suggest that audio information retrieval could potentially be implemented in animal breeding programs, aiming to improve horse gait.


Sign in / Sign up

Export Citation Format

Share Document