Enhanced performance of a thermal ground plane utilizing an Inorganic Aqueous Solution

Author(s):  
Armin Karimi ◽  
Sean Reilly ◽  
Ivan Catton
RSC Advances ◽  
2017 ◽  
Vol 7 (62) ◽  
pp. 39147-39152 ◽  
Author(s):  
K. N. Woods ◽  
E. C. Waddington ◽  
C. A. Crump ◽  
E. A. Bryan ◽  
T. S. Gleckler ◽  
...  

An all-inorganic, aqueous solution route enables facile control of composition and optimization of zirconium aluminum oxide thin film dielectric properties.


Author(s):  
Marin Sigurdson ◽  
YuWei Liu ◽  
Payam Bozorgi ◽  
David Bothman ◽  
Noel MacDonald ◽  
...  

Author(s):  
Michael Stubblebine ◽  
Sean Reilly ◽  
Qi Yao ◽  
Ivan Catton

Heat pipes are used in many applications as an effective means for transferring heat from a source to a sink. The basic heat pipe typically consists of a solid metal casing within which a working fluid is sealed inside at a given pressure. The latent heat transfer via the heat pipe’s working fluid allows it to carry a larger amount of heat energy than would normally be possible with an identically dimensioned solid metal rod. Water is often used as a working fluid due to its high heat of vaporization and suitable operating range for electronics cooling. For many applications, especially space, aluminum is desired as a casing material for its high thermal conductivity, low weight, and low cost. However, water is incompatible for use with aluminum heat pipes because it forms a non-condensable gas (NCG), hydrogen, when they contact. In this work, an inorganic aqueous solution (IAS), which has thermophysical properties similar to water, has been used as the working fluid with an aluminum alloy 5052-H2 casing. The prepared thermosiphon underwent long-term lifetime testing and the results indicate no tube failure or significant NCG formation for the duration of the 9 week study. Furthermore, the data indicate that the IAS fluid not only inhibited NCG production but also led to a reduction in heat pipe thermal resistance over time. It is believed that the chemicals in IAS react with the aluminum surface to create a compact oxide layer and electrochemical reaction which prevents hydrogen generation. A secondary, hydrophilic surface coating is also generated by the fluid on top of the first oxide (passivation) layer. This hydrophilic layer is believed to be responsible for the heat transfer enhancement which was observed during testing and the reduction in ΔT (defined as Tevap−Tcond) over time. Aluminum heat pipes used currently in practice utilize ammonia, or other non-water based working fluids, which have inferior latent heats of vaporization compared to water or an aqueous-based fluid such as IAS. The use of aluminum heat pipe casings in combination with a water-based fluid such as IAS has the potential to provide a significant increase in heat transport capability per device unit mass over traditional ammonia charged aluminum heat pipes.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Qi Yao ◽  
Michael J. Stubblebine ◽  
Ivan Catton

An inorganic aqueous solution, known as IAS, has shown its compatibility with aluminum phase-change heat transfer devices. When using IAS in aluminum devices, aluminum prefers to react with the two oxidizers, permanganate and chromate, rather than water to generate a thin and compact layer of aluminum oxide, which protects the aluminum surface and prevents further reactions. In addition, an electrochemical theory of aluminum passivation is introduced, and the existence of an electrochemical cycle is demonstrated by an aluminum thermosiphon test. The electrochemistry cycle, built up by liquid back flow and tube wall, allows the oxidizers to passivate the aluminum surface inside the device without being directly in contact with it. However, failure was detected while using IAS in thermosiphons with air natural convection cooling. The importance of a continuous liquid back flow to aluminum passivation in phase-change heat transfer devices is pointed out, and a vertical thermosiphon test with natural convection cooling is used to demonstrate that a discontinuous liquid back flow is the main reason of the failures.


Author(s):  
H. Peter J. de Bock ◽  
Shakti Chauhan ◽  
Pramod Chamarthy ◽  
Chris Eastman ◽  
Stanton Weaver ◽  
...  

Heat pipes are commonly used in electronics cooling applications to spread heat from a concentrated heat source to a larger heat sink. Heat pipes work on the principles of two-phase heat transfer by evaporation and condensation of a working fluid. The amount of heat that can be transported is limited by the capillary and hydrostatic forces in the wicking structure of the device. Thermal ground planes are two-dimensional high conductivity heat pipes that can serve as thermal ground to which heat can be rejected by a multitude of heat sources. As hydrostatic forces are dependent on gravity, it is commonly known that heat pipe and thermal ground plane performance is orientation dependent. The effect of variation of gravity force on performance is discussed and the development of a miniaturized thermal ground plane for high g operation is described. In addition, experimental results are presented from zero to −10g acceleration. The study shows and discusses that minimal orientation or g-force dependence can be achieved if pore dimensions in the wicking structure can be designed at micro/nano-scale dimensions.


Author(s):  
Qi Yao ◽  
Mike Stubblebine ◽  
Sean Reilly ◽  
Ladan Amouzegar ◽  
Ivan Catton

A novel Inorganic Aqueous Solution (IAS) is shown to have a better thermal performance than water when used as the working fluid in copper or aluminum made heat transfer devices. The effect of each chemical in the IAS and how it benefits heat transfer performance for different materials is explained. It was found that the IAS fluid reacts with copper and coats the surface with a layer of hydrophilic products during the initial boiling process. The surface roughness and wettability were increased which led to an enhanced heat transfer performance. The IAS passivates aluminum surfaces and makes water compatible for use with aluminum heat transfer devices. In addition, IAS has potential to improve the heat transfer performance by 50% lower the superheat when used with non-reactive material heat transfer devices.


2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Qi Yao ◽  
Jacob Supowit ◽  
Ivan Catton

A novel inorganic aqueous solution (IAS) is shown to have a better heat transfer performance than water when used as the working fluid in copper-made phase-change heat transfer devices. First, the physical properties of IAS are measured and compared to those of water. Another, a chemical analysis is performed, and the chemical reactions involved between IAS and the copper surface are listed and categorized by their contributions to the heat transfer performance. In addition, a capillary rise test is performed to show how each chemical contributes to the improvement of the surface wettability. Last, using IAS in copper-made phase-change heat transfer devices is discussed, and the main focus is how IAS improves the heat transfer performance by a smaller thermal resistance and a larger critical heat flux. The conclusion is validated by thermo-siphon tests at different inclination angles.


2018 ◽  
Vol 32 (9) ◽  
pp. 10016-10023 ◽  
Author(s):  
Najeeb ur Rehman Lashari ◽  
Mingshu Zhao ◽  
Qingyang Zheng ◽  
Huilin Gong ◽  
Xiaoping Song

2020 ◽  
Vol 22 ◽  
pp. 100738
Author(s):  
Yinchuang Yang ◽  
Dong Liao ◽  
Hongzhao Wang ◽  
Jian Qu ◽  
Jian Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document