Using an Inorganic Aqueous Solution (IAS) in Copper and Aluminum Phase Change Heat Transfer Devices

Author(s):  
Qi Yao ◽  
Mike Stubblebine ◽  
Sean Reilly ◽  
Ladan Amouzegar ◽  
Ivan Catton

A novel Inorganic Aqueous Solution (IAS) is shown to have a better thermal performance than water when used as the working fluid in copper or aluminum made heat transfer devices. The effect of each chemical in the IAS and how it benefits heat transfer performance for different materials is explained. It was found that the IAS fluid reacts with copper and coats the surface with a layer of hydrophilic products during the initial boiling process. The surface roughness and wettability were increased which led to an enhanced heat transfer performance. The IAS passivates aluminum surfaces and makes water compatible for use with aluminum heat transfer devices. In addition, IAS has potential to improve the heat transfer performance by 50% lower the superheat when used with non-reactive material heat transfer devices.

2017 ◽  
Vol 140 (4) ◽  
Author(s):  
Qi Yao ◽  
Jacob Supowit ◽  
Ivan Catton

A novel inorganic aqueous solution (IAS) is shown to have a better heat transfer performance than water when used as the working fluid in copper-made phase-change heat transfer devices. First, the physical properties of IAS are measured and compared to those of water. Another, a chemical analysis is performed, and the chemical reactions involved between IAS and the copper surface are listed and categorized by their contributions to the heat transfer performance. In addition, a capillary rise test is performed to show how each chemical contributes to the improvement of the surface wettability. Last, using IAS in copper-made phase-change heat transfer devices is discussed, and the main focus is how IAS improves the heat transfer performance by a smaller thermal resistance and a larger critical heat flux. The conclusion is validated by thermo-siphon tests at different inclination angles.


Author(s):  
Jacob Supowit ◽  
Sean Reilly ◽  
Ladan Amouzegar ◽  
Ivan Catton

Frozen startup of phase change heat transfer devices is a complex problem that can have a large impact on heat transfer systems. A patented novel working fluid developed at UCLA comprised of an inorganic aqueous solution (IAS) was investigated for potential effects on the freeze/thaw capabilities in phase change heat transfer devices by examining the melting process of droplets. Preliminary visual tests were conducted to gain insight into any physical processes that surface augmentation created by this fluid may have on the freezing and melting process. These tests demonstrated significant differences in liquid spreading, the melting process, and the melting rate of droplets on surfaces pre-treated with IAS. Contact angle measurements exhibited enhanced wetting properties. SEM images of frozen droplets showed that liquid freezes in the small capillary wick formed by the initial evaporation of IAS. Video of melting droplets showed a significant increase in melting rate when the surface was first treated with IAS due to superior liquid spreading.


2014 ◽  
Vol 22 (01) ◽  
pp. 1450005 ◽  
Author(s):  
SHUICHI TORII

This paper aims to study the convective heat transfer behavior of aqueous suspensions of nanoparticles flowing through a horizontal tube heated under constant heat flux condition. Consideration is given to the effects of particle concentration and Reynolds number on heat transfer enhancement and the possibility of nanofluids as the working fluid in various heat exchangers. It is found that (i) significant enhancement of heat transfer performance due to suspension of nanoparticles in the circular tube flow is observed in comparison with pure water as the working fluid, (ii) enhancement is intensified with an increase in the Reynolds number and the nanoparticles concentration, and (iii) substantial amplification of heat transfer performance is not attributed purely to the enhancement of thermal conductivity due to suspension of nanoparticles.


2015 ◽  
Vol 26 (12) ◽  
pp. 1550140 ◽  
Author(s):  
Amin Ebrahimi ◽  
Ehsan Roohi

Flow patterns and heat transfer inside mini twisted oval tubes (TOTs) heated by constant-temperature walls are numerically investigated. Different configurations of tubes are simulated using water as the working fluid with temperature-dependent thermo-physical properties at Reynolds numbers ranging between 500 and 1100. After validating the numerical method with the published correlations and available experimental results, the performance of TOTs is compared to a smooth circular tube. The overall performance of TOTs is evaluated by investigating the thermal-hydraulic performance and the results are analyzed in terms of the field synergy principle and entropy generation. Enhanced heat transfer performance for TOTs is observed at the expense of a higher pressure drop. Additionally, the secondary flow generated by the tube-wall twist is concluded to play a critical role in the augmentation of convective heat transfer, and consequently, better heat transfer performance. It is also observed that the improvement of synergy between velocity and temperature gradient and lower irreversibility cause heat transfer enhancement for TOTs.


2014 ◽  
Vol 6 ◽  
pp. 147059 ◽  
Author(s):  
Behrouz Takabi ◽  
Saeed Salehi

This paper numerically examines laminar natural convection in a sinusoidal corrugated enclosure with a discrete heat source on the bottom wall, filled by pure water, Al2O3/water nanofluid, and Al2O3-Cu/water hybrid nanofluid which is a new advanced nanofluid with two kinds of nanoparticle materials. The effects of Rayleigh number (103≤Ra≤106) and water, nanofluid, and hybrid nanofluid (in volume concentration of 0% ≤ ϕ ≤ 2%) as the working fluid on temperature fields and heat transfer performance of the enclosure are investigated. The finite volume discretization method is employed to solve the set of governing equations. The results indicate that for all Rayleigh numbers been studied, employing hybrid nanofluid improves the heat transfer rate compared to nanofluid and water, which results in a better cooling performance of the enclosure and lower temperature of the heated surface. The rate of this enhancement is considerably more at higher values of Ra and volume concentrations. Furthermore, by applying the modeling results, two correlations are developed to estimate the average Nusselt number. The results reveal that the modeling data are in very good agreement with the predicted data. The maximum error for nanofluid and hybrid nanofluid was around 11% and 12%, respectively.


2019 ◽  
Vol 11 (24) ◽  
pp. 6960
Author(s):  
Juan Shi ◽  
Hua Xue ◽  
Zhenqian Chen ◽  
Li Sun

In this work, a new solar vacuum tube (SVT) integrating with phase change material is introduced and numerically investigated. The mathematical model and the numerical solution of phase change heat transfer is introduced. The heat transfer of the solar energy collection system during the energy storage process is simulated. Solid-liquid phase change characteristics of the SVT with paraffin inside is analyzed. Optimization analysis of fin structure parameters (fin thickness and fin spacing) in the vacuum tube is conducted. The results showed that the metal fin has a great effect on the phase change heat transfer of paraffin in SVTs. The closer the paraffin is to the fins, the more uniform the paraffin temperature is and the sooner the paraffin melts. As the fin thickness increases and the spacing between the fins decreases, the melting time of the paraffin decreases. Meanwhile, the effect of fin spacing on the overall heat transfer performance of the phase change energy storage tube is larger than the effect of the fin thickness. When the fin thickness is 2 mm, the melting time of paraffin with a fin spacing of 80 mm is 21,000 s, which is almost three times of that with a fin spacing of 10 mm (7400 s). Therefore, decreasing fin spacing is an effective way of enhancing phase change heat transfer. When the total fin volume is constant, a SVT with small fin space and small fin thickness performs better in heat transfer performance.


2015 ◽  
Vol 88 ◽  
pp. 391-397 ◽  
Author(s):  
Hui Li ◽  
Bo Zhou ◽  
Yong Tang ◽  
Rui Zhou ◽  
Zhongshan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document