A considering lane information and obstacle-avoidance motion planning approach

Author(s):  
Yun-xiao Shan ◽  
Bi-jun Li ◽  
Xiaomin Guo ◽  
Jian-Zhou ◽  
Ling-Zheng
Author(s):  
Xuehao Sun ◽  
Shuchao Deng ◽  
Tingting Zhao ◽  
Baohong Tong

When a car-like robot travels in an unstructured scenario, real-time motion planning encounters the problem of unstable motion state in obstacle avoidance planning. This paper presents a hybrid motion planning approach based on the timed-elastic-band (TEB) approach and artificial potential field. Different potential fields in an unstructured scenario are established, and the real-time velocity of the car-like robot is planned by using the conversion function of the virtual potential energy of the superimposed potential field and the virtual kinetic energy of the robot. The optimized TEB approach plans the local optimal path and solves the problems related to the local minimum region and non-reachable targets. The safety area of the dynamic obstacle is constructed to realize turning or emergency stop obstacle avoidance, thereby effectively ensuring the safety of the car-like robot in emergency situations. The simulation experiments show that the proposed approach has superior kinematic characteristics and satisfactory obstacle avoidance planning effects and can improve the motion comfort and safety of the car-like robot. In the practical test, the car-like robot moves stably in a dynamic scenario, and the proposed approach satisfies the actual application requirements.


2017 ◽  
Vol 9 (4) ◽  
Author(s):  
Midhun S. Menon ◽  
V. C. Ravi ◽  
Ashitava Ghosal

Hyper-redundant snakelike serial robots are of great interest due to their application in search and rescue during disaster relief in highly cluttered environments and recently in the field of medical robotics. A key feature of these robots is the presence of a large number of redundant actuated joints and the associated well-known challenge of motion planning. This problem is even more acute in the presence of obstacles. Obstacle avoidance for point bodies, nonredundant serial robots with a few links and joints, and wheeled mobile robots has been extensively studied, and several mature implementations are available. However, obstacle avoidance for hyper-redundant snakelike robots and other extended articulated bodies is less studied and is still evolving. This paper presents a novel optimization algorithm, derived using calculus of variation, for the motion planning of a hyper-redundant robot where the motion of one end (head) is an arbitrary desired path. The algorithm computes the motion of all the joints in the hyper-redundant robot in a way such that all its links avoid all obstacles present in the environment. The algorithm is purely geometric in nature, and it is shown that the motion in free space and in the vicinity of obstacles appears to be more natural. The paper presents the general theoretical development and numerical simulations results. It also presents validating results from experiments with a 12-degree-of-freedom (DOF) planar hyper-redundant robot moving in a known obstacle field.


PAMM ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 799-800 ◽  
Author(s):  
Victoria Grushkovskaya ◽  
Alexander Zuyev

2016 ◽  
pp. 1177-1202 ◽  
Author(s):  
Javier Minguez ◽  
Florant Lamiraux ◽  
Jean-Paul Laumond

Sign in / Sign up

Export Citation Format

Share Document