Frequency doublers with transverse modulation and bunching of the electron beam under inhomogeneous magnetic field

Author(s):  
A. A. Kurayev ◽  
A. O. Rak ◽  
A. K. Sinitsyn ◽  
I. N. Tsyrelchuk
2019 ◽  
Vol 34 (36) ◽  
pp. 1942030
Author(s):  
E. A. Orozco ◽  
J. D. González ◽  
J. R. Beltrán ◽  
V. E. Vergara

We report a detailed simulation of a bunched electron-beam accelerated in a TE[Formula: see text] cylindrical cavity immersed in a static inhomogeneous magnetic field using a relativistic full electromagnetic particle-in-cell (PIC). This type of acceleration concept is known as Spatial AutoResonance Acceleration (SARA) in which the magnetic field profile is such that it keeps the electron-beam in the acceleration regime along their trajectories. In this work, the numerical experiments are carried out including a bunched electron-beam with the concentrations in the range [Formula: see text]–[Formula: see text][Formula: see text]cm[Formula: see text] in a TE[Formula: see text] cylindrical microwave field, at a frequency of 2.45 GHz and an amplitude of 15 kV/cm. The electron energy reaches values up to 250 keV without significant unfocusing effect that can be used as a basis to produce hard X-ray. Additionally, a comparison between the data obtained from the full electromagnetic PIC simulations and the results derived from the relativistic Newton–Lorentz equation in a single particle approximation is carried out.


2018 ◽  
Vol 44 (10) ◽  
pp. 949-952 ◽  
Author(s):  
A. V. Gromov ◽  
M. B. Goykhman ◽  
N. F. Kovalev ◽  
A. V. Palitsin ◽  
M. I. Fuks ◽  
...  

Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


2018 ◽  
Vol 1 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Alexey Chernogor ◽  
Igor Blinkov ◽  
Alexey Volkhonskiy

The flow, energy distribution and concentrations profiles of Ti ions in cathodic arc are studied by test particle Monte Carlo simulations with considering the mass transfer through the macro-particles filters with inhomogeneous magnetic field. The loss of ions due to their deposition on filter walls was calculated as a function of electric current and number of turns in the coil. The magnetic field concentrator that arises in the bending region of the filters leads to increase the loss of the ions component of cathodic arc. The ions loss up to 80 % of their energy resulted by the paired elastic collisions which correspond to the experimental results. The ion fluxes arriving at the surface of the substrates during planetary rotating of them opposite the evaporators mounted to each other at an angle of 120° characterized by the wide range of mutual overlapping.


Sign in / Sign up

Export Citation Format

Share Document