magnetic field profile
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Juan Francisco Caneses Marin ◽  
Cornwall Lau ◽  
Richard H Goulding ◽  
Tim S Bigelow ◽  
Ted M Biewer ◽  
...  

Abstract The principal objective of this work is to report on the power coupled to a tungsten target in the Proto-MPEX device during oblique injection of a microwave beam (< 70 kW at 28 GHz) into a high-power (~100 kW at 13.56 MHz) over-dense (n_e>1×10^19 m^(-3)) deuterium helicon plasma column. The experimental setup, electron heating system, electron heating scheme, and IR thermographic diagnostic for quantifying the power transport is described in detail. It is demonstrated that the power transported to the target can be effectively controlled by adjusting the magnetic field profile. Using this method, heat fluxes up to 22 MWm-2 and power transport efficiencies in the range of 17-20% have been achieved using 70 kW of microwave power. It is observed that most of the heat flux is confined to narrow region at the plasma periphery. Ray-tracing calculations are presented which indicate that power is coupled to the plasma electrons via an O-X-B mode conversion process. Calculations indicate that the microwave power is absorbed in a single pass at the plasma periphery via collisions and in the over-dense region via 2nd harmonic cyclotron resonance of the electron Bernstein wave. The impact of these results is discussed in the context of MPEX.


2021 ◽  
Author(s):  
Helmi Malova ◽  
Lev Zelenyi ◽  
Elena Grigorenko ◽  
Victor Popov ◽  
Eduard Dubinin

&lt;p&gt;Thin current sheets (TCSs) with thicknesses about ion Larmor radii can play the key role in space; particularly they can store and then explosively release the accumulated free energy. The dynamics of ions moving along quasi-adiabatic trajectories in TCSs is different from one of magnetized electrons following guiding center drift orbits. Due to this property TCSs can be described in a frame of a hybrid approach. The thickness of the super-thin embedded electron sheet remains uncertain because of the scale-free character of magnetized electron motion. We propose a new analytical approach to describe the multilayer TCS and provide the universal expression describing the embedded electron sheet as a function of the cross-sheet transversal coordinate z characterizing TCS. We demonstrated that the unique property of the electron sheet is the nonlinear character of magnetic field profile:&amp;#160; &lt;em&gt;B(z) ~ z &lt;sup&gt;1/3 &lt;/sup&gt;&lt;/em&gt;which conforms excellently with MAVEN observations in the Martian magnetotail.&amp;#160;&lt;/p&gt;&lt;p&gt;This work was supported by the Russian Science Foundation (grant # 20-42-04418).&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;


2021 ◽  
Vol 28 (2) ◽  
pp. 404-409
Author(s):  
Takashi Tanaka ◽  
Yuichiro Kida ◽  
Ryota Kinjo ◽  
Tadashi Togashi ◽  
Hiromitsu Tomizawa ◽  
...  

An undulator generating a magnetic field whose longitudinal profile is arbitrarily varied has been developed, which is one of the key components in a number of proposed new concepts in free-electron lasers. The undulator is composed of magnet modules, each of which corresponds to a single undulator period, and is driven by a linear actuator to change the magnetic gap independently. To relax the requirement on the actuator, the mechanical load on each module due to magnetic force acting from opponent and adjacent modules is reduced by means of two kinds of spring systems. The performance of the constructed undulator has been successfully demonstrated by magnetic measurement and characterization of synchrotron radiation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yukako Fujishiro ◽  
Naoya Kanazawa ◽  
Ryosuke Kurihara ◽  
Hiroaki Ishizuka ◽  
Tomohiro Hori ◽  
...  

AbstractThe electrical Hall effect can be significantly enhanced through the interplay of the conduction electrons with magnetism, which is known as the anomalous Hall effect (AHE). Whereas the mechanism related to band topology has been intensively studied towards energy efficient electronics, those related to electron scattering have received limited attention. Here we report the observation of giant AHE of electron-scattering origin in a chiral magnet MnGe thin film. The Hall conductivity and Hall angle, respectively, reach $$40,000$$ 40 , 000  Ω−1 cm−1 and $$18$$ 18 % in the ferromagnetic region, exceeding the conventional limits of AHE of intrinsic and extrinsic origins, respectively. A possible origin of the large AHE is attributed to a new type of skew-scattering via thermally excited spin-clusters with scalar spin chirality, which is corroborated by the temperature–magnetic-field profile of the AHE being sensitive to the film-thickness or magneto-crystalline anisotropy. Our results may open up a new platform to explore giant AHE responses in various systems, including frustrated magnets and thin-film heterostructures.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 283
Author(s):  
Nafiseh Sohrabi ◽  
Afshar Alihosseini ◽  
Vahid Pirouzfar ◽  
Maysam Zamani Pedram

Nowadays, carbon nano (CN) structures and specifically carbon nanotubes (CNTs), because of the nanotube’s nanoscale shape, are widely used in carrier and separation applications. The conjugation of CNTs with polysaccharide, proteins, drugs, and magnetic nanoparticles provides a chance for smart targeting and trajectory manipulation, which are used in the crucial field of life science applications, including for cancer disease diagnostics and treatments. Providing an optimal procedure for delivering a drug to a specific area based on mathematical criteria is key in systemic delivery design. Trajectory guidance and applied force control are the main parameters affected by systemic delivery. Moreover, a better understanding of the tissue parameters and cell membrane molecular behaviour are other factors that can be indirectly affected by the targeted delivery. Both sides are an essential part of successful targeting. The lung is one of the challenging organs for drug delivery inside the human body. It has a large surface area with a thin epithelium layer. A few severe diseases directly involve human lung cells, and optimal and successful drug delivery to the lung for the treatment procedure is vital. In this paper, we studied functionalized CNTs’ targeted delivery via crossing through the lung cell membrane. Molecular dynamics (MD) software simulated all the interaction forces. Mathematical modelling of the cell membrane and proposed delivery system based on the relation of velocity and force has been considered. Dynamics equations for CNTs were defined in the time and frequency domain using control theory methods. The proposed delivery system consists of two main parts: crossing through the cell membrane and targeting inside the cell. For both steps, a mathematical model and a proper magnetic field profile have been proposed. The designed system provides criteria for crossing through the cell membrane within 30 s to 5 min and a translocation profile of 1 to 100 Å.


2020 ◽  
Vol 86 (3) ◽  
Author(s):  
T. Neukirch ◽  
F. Wilson ◽  
O. Allanson

We discuss a family of Vlasov–Maxwell equilibrium distribution functions for current sheet equilibria that are intermediate cases between the Harris sheet and the force-free (or modified) Harris sheet. These equilibrium distribution functions have potential applications to space and astrophysical plasmas. The existence of these distribution functions had been briefly discussed by Harrison & Neukirch (Phys. Rev. Lett., vol. 102, (2009a), 135003), but here it is shown that their approach runs into problems in the limit where the guide field goes to zero. The nature of this problem will be discussed and an alternative approach will be suggested that avoids the problem. This is achieved by considering a slight variation of the magnetic field profile, which allows a smooth transition between the Harris and force-free Harris sheet cases.


2019 ◽  
Vol 34 (36) ◽  
pp. 1942030
Author(s):  
E. A. Orozco ◽  
J. D. González ◽  
J. R. Beltrán ◽  
V. E. Vergara

We report a detailed simulation of a bunched electron-beam accelerated in a TE[Formula: see text] cylindrical cavity immersed in a static inhomogeneous magnetic field using a relativistic full electromagnetic particle-in-cell (PIC). This type of acceleration concept is known as Spatial AutoResonance Acceleration (SARA) in which the magnetic field profile is such that it keeps the electron-beam in the acceleration regime along their trajectories. In this work, the numerical experiments are carried out including a bunched electron-beam with the concentrations in the range [Formula: see text]–[Formula: see text][Formula: see text]cm[Formula: see text] in a TE[Formula: see text] cylindrical microwave field, at a frequency of 2.45 GHz and an amplitude of 15 kV/cm. The electron energy reaches values up to 250 keV without significant unfocusing effect that can be used as a basis to produce hard X-ray. Additionally, a comparison between the data obtained from the full electromagnetic PIC simulations and the results derived from the relativistic Newton–Lorentz equation in a single particle approximation is carried out.


Sign in / Sign up

Export Citation Format

Share Document