In-situ post-treatment for field emission improvement of carbon nanofibers in inductively coupled plasma system

Author(s):  
C.H. Weng ◽  
Y.Y. Lin ◽  
C.H. Tung ◽  
H.W. Wei ◽  
K.C. Leou ◽  
...  
Author(s):  
Dan Bevan ◽  
Christopher David Coath ◽  
Jamie Lewis ◽  
Johannes B Schwieters ◽  
Nicholas Selwyn Lloyd ◽  
...  

We document the utility for in situ Rb-Sr dating of a one-of-a-kind tribrid mass spectrometer, ‘Proteus’, coupled to a UV laser ablation system. Proteus combines a pre-cell quadrupole mass-filter,collision cell,...


Author(s):  
Timothy R. Holbrook ◽  
Doriane Gallot-Duval ◽  
Thorsten Reemtsma ◽  
Stephan Wagner

Characterization and investigation into complex nano-fraction samples have traditionally been done using nebulizer single particle inductively coupled plasma mass spectrometry (neb-spICP-MS). Here a method was developed and tested for the...


Author(s):  
Christopher H. Ingles ◽  
John A. Mavrogenes

ABSTRACT Laser ablation-inductively coupled plasma-mass spectrometry was used to traverse hydrothermal vein sphalerite from different ore-forming stages of the Porgera Au-Ag mine, Papua New Guinea. Elements were measured in situ over the growth of crystals to investigate the greatly varying concentrations of cations in sphalerite and their positions in the lattice. Traverse profiles for 16 elements were obtained and aligned to transmitted light images where possible. Each sample contained an array of elements, with many displaying orders of magnitude concentration differences. Results show the simultaneous incorporation of Cu and Sn in sphalerite, as well as Cu and Ag, In and Sn, As and Sb, Fe and Mn, and Cu and Ga. The relation [4Zn2+ ↔ 2Cu+ + Sn2+ + Sn4+] is proposed to explain the 1:1 Cu–Sn correlation. Further relations can be seen, including a Ga “ceiling” or Cu “floor”, where Ga incorporation becomes dependent on Cu concentrations. Furthermore, silver was also observed to correlate with Au, Mn, Ni, Pb, and Bi. Meta-stable solid solutions between pairs such as Cu, Ag; Fe, Mn; As, Sb; and In, Sn are also suggested. Each of these pairs are neighbors on the periodic table of elements, which suggests that simple solid solution can occur, and positive correlations for all four solid solutions were found in one sample alone. While the concept of charge-specific solid solutions in sphalerite has been discussed in the literature with reference to monovalent cations, the results presented herein also indicate solid solutions of higher oxidation states, containing many cations. Furthermore, while cations in charge-specific solid solutions have been proposed to compete for lattice sites in sphalerite, simultaneous in situ coupled concentrations at Porgera suggest otherwise. Cationic substitution equations displaying decimal ratios of each element in solid solution can then provide a novel method to distinguish between solid solution concentrations in different samples. For example, displaying 1:1 ratios of Cu–Ag and Sb–As: [2Zn2+ ↔ (Cu+0.5, Ag+0.5) + (As3+0.5, Sb3+0.5)], or for a 100:1 Fe–Mn ratio: [Zn2+ ↔ (Fe2+0.99, Mn2+0.01)].


2018 ◽  
Vol 941 ◽  
pp. 21-26
Author(s):  
Gloria Basanta ◽  
Ana L. Rivas ◽  
Ervis Díaz ◽  
Carlos Parra

The present work has been undertaken to assess the evolution of dissolution process of large dendritic precipitates in a V-Nb-Ti microalloyed steel. The study was performed by reheating the samples at 1250°C, simulating the industrial reheating practices at laboratory scale and in situ, following industrial profile; afterwards the samples were quenched in 10%NaCl aqueous solution. The characterization of the material was carried out by scanning electron microscopy accompanied with dispersive energy spectrometry, and chemical analysis by inductively coupled plasma optical emission spectrometry. The results showed a partial dissolution of dendritic precipitates. This process ocurred by a progressive dissolving the Nb-rich shells formed over cuboidal particles and primary arm of well-faceted dendritic precipitates, and by fragmentation and spheroidization of secondary branches. These processes gave rise to spherical Nb rich precipitates and cuboidal particles at the reheating conditions used in this study. Both type of particles contain vanadium.


2018 ◽  
Vol 663 ◽  
pp. 21-24 ◽  
Author(s):  
Se Jun Park ◽  
Dohyung Kim ◽  
Seungmoo Lee ◽  
Yongjoon Ha ◽  
Mingyoo Lim ◽  
...  

2020 ◽  
Vol 58 (3) ◽  
pp. 293-311 ◽  
Author(s):  
Zeinab Azadbakht ◽  
David R. Lentz

ABSTRACT Biotite grains from 22 felsic intrusions in New Brunswick were mapped in situ using a laser ablation-inductively coupled plasma-mass spectrometer (LA-ICP-MS). We investigated the extent to which biotite can retain its magmatic zoning patterns and, where zoning does exist, how it can be used to elucidate early to late stage, syn-magmatic to post-crystallization processes. Although the major element and halogen contents of the examined biotite phenocrysts are homogeneous, two-thirds of the grains display trace-element zoning for Ba, Rb, and Cs. The results also indicated that zoning is better retained in larger grains (i.e., > 500 × 500 μm) with minimal alteration and mineral inclusions. An exceptionally well-zoned Li-rich siderophyllite from the Pleasant Ridge topaz granite in southwestern New Brunswick shows Ti, Ta, Sn, W, Cs, Rb, and V (without Li or Ba) zoning. Cesium values increase from 200 to 1400 ppm from core to rim. Conversely, Sn and W values decrease toward the rim (50 to 10 and 100 to 10 ppm, respectively). Tantalum and Ti values show fewer variations but drop abruptly close to the rim of the grain (100 to 20 and 2000 to 500 ppm, respectively). These observations may indicate crystallization of mineral phases with high partition coefficients for these highly incompatible elements (except Ti) (e.g., cassiterite and rutile) followed by fractionation of a fluid phase at a later stage of magma crystallization. The preservation of zoning may indicate rapid cooling post-crystallization of the parent magma.


Sign in / Sign up

Export Citation Format

Share Document