Non-destructive measurement of residual stresses in railway wheels by ultrasonic method

Author(s):  
Yuri Kudryavtsev ◽  
Jacob Kleiman
Author(s):  
Jacob Kleiman ◽  
Yuri Kudryavtsev ◽  
Volodimir Smilenko

An ultrasonic computerized complex for measurement of residual and applied stresses UltraMARS® was recently introduced. Average through thickness stresses can be measured based on the acoustic-elasticity effect, according to which the velocity of elastic wave propagation in solids is dependent on the mechanical stress. The system was used successfully in numerous applications proving to be a reliable, fast and economical way to evaluate residual and applied stresses in materials and structures. The newly developed complex was used in a number of applications that called for non-destructive evaluation of stresses. Examples of such applications will be discussed in the paper. The system was further developed to allow for measurement of subsurface and surface stresses in structural materials and made of them structures.


1998 ◽  
Vol 3 (6) ◽  
pp. 267-271 ◽  
Author(s):  
A. Joseph ◽  
P. Palanichamy ◽  
S. K. Rai ◽  
T. Jayakumar ◽  
B. Raj

Author(s):  
C. O. Rund

Residual surface stresses have been shown to play a critical role in the failure of metallic components through fatigue, stress corrosion cracking, and corrosion fatigue. A method of measuring these residual stresses remotely and nondestructively would improve the ability to assess the potential failure susceptibility of components in service.


Author(s):  
Yuri Kudryavtsev

The application of an ultrasonic non-destructive method for residual stress (RS) measurements has shown that, in many cases, this technique is very efficient and allows measuring the RS both in laboratory conditions and in real structures in field for a wide range of materials. Using this technique, one can measure the RS at the same points many times, studying for instance, the changes of RS under the action of service loading or effectiveness of stress-relieving techniques. An ultrasonic computerized complex (UCC) for non-destructive measurement of residual and applied stresses was developed recently. The complex includes a measurement unit with transducers, basic supporting software, an advanced database and an Expert System, housed in a laptop, for analysis of the influence of RS on the fatigue life of welded elements. In general, the ultrasonic method allows one to measure the RS in both cases: averaged through thickness or in surface layers. The present version of UCC allows measuring the averaged through thickness biaxial RS in plates 2–150 mm thick. The results of ultrasonic RS measurement in large scale welded specimens and structures are also discussed in this paper.


2006 ◽  
Vol 524-525 ◽  
pp. 595-600 ◽  
Author(s):  
Jun Peng ◽  
Vincent Ji ◽  
Jian Min Zhang ◽  
Wilfrid Seiler

The non-destructive analysis by GIXRD allows us to determine the residual stress distribution as a function of XRD penetration depth and film thickness. A new development on the determination of residual stresses distribution is presented here. The procedure, based on the GIXRD geometry (referred to here as the ‘sin2ψ*’), enables non-destructive measurement of stresses gradient with only one diffraction family plan at a chosen depth taking into account the correction of measured direction. The chosen penetration depth is well defined for different combination of ψ and Φ and needs not to be changed during experimentation. This method was applied for measurement of residual stress gradient in Cu thin films. The obtained residual stress levels and their distribution were quite comparable with those determined by another multi-reflection method.


2021 ◽  
Vol 66 (2) ◽  
pp. 83-95
Author(s):  
Jacob Kleiman

Welding is used widely in the automotive industry for joining a variety of structural components and parts. Of paramount importance in these structures are their engineering properties, such as fatigue life, distortions, dimensional stability and corrosion resistance that can be affected considerably by the presence of residual stresses (RS). The knowledge of RS and the ability to control their distribution in welded structures is critical when evaluating their fatigue life and preventing catastrophic failures. An engineering concept of residual stress management (RSM) has been developed that addresses all aspects of residual stresses in structural elements. RSM includes three major stages in stress management, i.e. RS determination, RS analysis and RS redistribution. Using this approach, stresses in structures and materials can be evaluated in each specific case either theoretically or experimentally and the performance and fatigue behavior of such structures optimized. This paper is built as an overview of the RSM concept and its application in the fields of non-destructive measurement of residual and applied stresses and in treatment of structures with residual stresses to achieve better performance and longer fatigue life. All three stages of the RSM concept will be discussed and for each of the stages practical engineering approach examples will be given. An example of a project in which the residual stress distribution in a filet welded joint was measured, analyzed and changed by post-weld treatment will be presented to demonstrate the effectiveness of the RSM approach. The advancements in the modern tools used in this project for non-destructive measurement of residual stresses using an ultrasonic computerized complex for residual stress measurement and the ultrasonic peening for redistribution of the residual stresses that allowed improving the quality of the welds and increasing their fatigue life will also be presented.


Friction ◽  
2021 ◽  
Author(s):  
Pan Dou ◽  
Tonghai Wu ◽  
Zhaopeng Luo ◽  
Peiping Yang ◽  
Zhongxiao Peng ◽  
...  

AbstractRoller bearings support heavy loads by riding on an ultra-thin oil film (between the roller and raceway), the thickness of which is critical as it reflects the lubrication performance. Ultrasonic interfacial reflection, which facilitates the non-destructive measurement of oil-film thickness, has been widely studied. However, insufficient spatial resolution around the rolling line contact zone remains a barrier despite the use of miniature piezoelectric transducers. In this study, a finite-element-aided method is utilized to simulate wave propagation through a three-layered structure of roller-oil-raceway under elastohydrodynamic lubrication (EHL) with nonlinear characteristics of the i) deformed curvature of the cylindrical roller and ii) nonuniform distribution of the fluid bulk modulus along the circumference of the oil layer being considered. A load and speed-dependent look-up table is then developed to establish an accurate relationship between the overall reflection coefficient (directly measured by an embedded ultrasonic transducer) and objective variable of the central oil-film thickness. The proposed finite-element-aided method is verified experimentally in a roller-raceway test rig with the ultrasonically measured oil-film thickness corresponding to the values calculated using the EHL theory.


Sign in / Sign up

Export Citation Format

Share Document