Pedestrian Stride-Length Estimation Algorithm Based on DTW Motion Mode Recognition

Author(s):  
Guoquan Li ◽  
Kai Yao ◽  
Enxu Geng ◽  
Jinzhao Lin ◽  
Yu Pang
2019 ◽  
Vol 11 (9) ◽  
pp. 1140 ◽  
Author(s):  
Qu Wang ◽  
Langlang Ye ◽  
Haiyong Luo ◽  
Aidong Men ◽  
Fang Zhao ◽  
...  

Stride length and walking distance estimation are becoming a key aspect of many applications. One of the methods of enhancing the accuracy of pedestrian dead reckoning is to accurately estimate the stride length of pedestrians. Existing stride length estimation (SLE) algorithms present good performance in the cases of walking at normal speed and the fixed smartphone mode (handheld). The mode represents a specific state of the carried smartphone. The error of existing SLE algorithms increases in complex scenes with many mode changes. Considering that stride length estimation is very sensitive to smartphone modes, this paper focused on combining smartphone mode recognition and stride length estimation to provide an accurate walking distance estimation. We combined multiple classification models to recognize five smartphone modes (calling, handheld, pocket, armband, swing). In addition to using a combination of time-domain and frequency-domain features of smartphone built-in accelerometers and gyroscopes during the stride interval, we constructed higher-order features based on the acknowledged studies (Kim, Scarlett, and Weinberg) to model stride length using the regression model of machine learning. In the offline phase, we trained the corresponding stride length estimation model for each mode. In the online prediction stage, we called the corresponding stride length estimation model according to the smartphone mode of a pedestrian. To train and evaluate the performance of our SLE, a dataset with smartphone mode, actual stride length, and total walking distance were collected. We conducted extensive and elaborate experiments to verify the performance of the proposed algorithm and compare it with the state-of-the-art SLE algorithms. Experimental results demonstrated that the proposed walking distance estimation method achieved significant accuracy improvement over existing individual approaches when a pedestrian was walking in both indoor and outdoor complex environments with multiple mode changes.


Health ◽  
2015 ◽  
Vol 07 (06) ◽  
pp. 704-714 ◽  
Author(s):  
Benoît Sijobert ◽  
Mourad Benoussaad ◽  
Jennifer Denys ◽  
Roger Pissard-Gibollet ◽  
Christian Geny ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Haifeng Xing ◽  
Jinglong Li ◽  
Bo Hou ◽  
Yongjian Zhang ◽  
Meifeng Guo

Pedestrian dead reckoning (PDR) can be used for continuous position estimation when satellite or other radio signals are not available, and the accuracy of the stride length measurement is important. Current stride length estimation algorithms, including linear and nonlinear models, consider a few variable factors, and some rely on high precision and high cost equipment. This paper puts forward a stride length estimation algorithm based on a back propagation artificial neural network (BP-ANN), using a consumer-grade inertial measurement unit (IMU); it then discusses various factors in the algorithm. The experimental results indicate that the error of the proposed algorithm in estimating the stride length is approximately 2%, which is smaller than that of the frequency and nonlinear models. Compared with the latter two models, the proposed algorithm does not need to determine individual parameters in advance if the trained neural net is effective. It can, thus, be concluded that this algorithm shows superior performance in estimating pedestrian stride length.


2018 ◽  
Vol 22 (2) ◽  
pp. 354-362 ◽  
Author(s):  
Julius Hannink ◽  
Thomas Kautz ◽  
Cristian F. Pasluosta ◽  
Jens Barth ◽  
Samuel Schulein ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2574 ◽  
Author(s):  
Junhua Ye ◽  
Xin Li ◽  
Xiangdong Zhang ◽  
Qin Zhang ◽  
Wu Chen

Several pedestrian navigation solutions have been proposed to date, and most of them are based on smartphones. Real-time recognition of pedestrian mode and smartphone posture is a key issue in navigation. Traditional ML (Machine Learning) classification methods have drawbacks, such as insufficient recognition accuracy and poor timing. This paper presents a real-time recognition scheme for comprehensive human activities, and this scheme combines deep learning algorithms and MEMS (Micro-Electro-Mechanical System) sensors’ measurements. In this study, we performed four main experiments, namely pedestrian motion mode recognition, smartphone posture recognition, real-time comprehensive pedestrian activity recognition, and pedestrian navigation. In the procedure of recognition, we designed and trained deep learning models using LSTM (Long Short-Term Memory) and CNN (Convolutional Neural Network) networks based on Tensorflow framework. The accuracy of traditional ML classification methods was also used for comparison. Test results show that the accuracy of motion mode recognition was improved from 89.9 % , which was the highest accuracy and obtained by SVM (Support Vector Machine), to 90.74 % (LSTM) and 91.92 % (CNN); the accuracy of smartphone posture recognition was improved from 81.60 % , which is the highest accuracy and obtained by NN (Neural Network), to 93.69 % (LSTM) and 95.55 % (CNN). We give a model transformation procedure based on the trained CNN network model, and then obtain the converted . t f l i t e model, which can be run in Android devices for real-time recognition. Real-time recognition experiments were performed in multiple scenes, a recognition model trained by the CNN network was deployed in a Huawei Mate20 smartphone, and the five most used pedestrian activities were designed and verified. The overall accuracy was up to 89.39 % . Overall, the improvement of recognition capability based on deep learning algorithms was significant. Therefore, the solution was helpful to recognize comprehensive pedestrian activities during navigation. On the basis of the trained model, a navigation test was performed; mean bias was reduced by more than 1.1 m. Accordingly, the positioning accuracy was improved obviously, which is meaningful to apply DL in the area of pedestrian navigation to make improvements.


2019 ◽  
Vol 3 (10) ◽  
pp. 1-4 ◽  
Author(s):  
Yi Chiew Han ◽  
Kiing Ing Wong ◽  
Iain Murray

Sign in / Sign up

Export Citation Format

Share Document