Electro-Hydraulic Servo System Control Technology Based on Fuzzy-Multi-PID

Author(s):  
Xiaole Yang ◽  
Yuanliang Zhang ◽  
Wenlong Zhao
2013 ◽  
Vol 336-338 ◽  
pp. 581-584 ◽  
Author(s):  
Ye Lv ◽  
Jing Ma ◽  
De Cun He ◽  
Xiang Gao

The electro-hydraulic servo system gradually processes toward the fast, high-power and high-precision direction. The traditional PID control needs to coordinate the contradiction between rapidity and stability, and cannot meet the system performance requirements in the case of parameter variations and external interference. Based on electro-hydraulic servo system structure and principles, system mathematical model was established, and Diagonal Recurrent Neural Network (DRNN)-based adaptive PID controller was designed and compared with positional PID control. The simulation results show that: DRNN adaptive PID control effect is superior to positional PID control, which can effectively improve the system dynamic and anti-interference performance, and has strong self-learning and adaptive capacity.


2013 ◽  
Vol 385-386 ◽  
pp. 823-826
Author(s):  
Yu Qin Wang ◽  
Quan Sheng Jiang ◽  
Han Sheng Yang

In order to improve ride comfort and reduce the sense of frustration generated by the car when shifting, H robust control algorithm is proposed to optimize the design of CVT electro-hydraulic servo system. The CVT electro-hydraulic servo system is optimized by the development of system control model and the design of H∞ robust controller. The simulation result indicates that the systems uncertainties can be optimized effectively by the H∞ controller, while the systems anti-interference ability and robustness is improved obviously.


2013 ◽  
Vol 753-755 ◽  
pp. 2674-2678
Author(s):  
Kun Yang ◽  
Cai Jun Liu ◽  
Shu Min Liu

Based on the situation that the hydraulic position servo system is easily influenced by the external interference and the parameters of which are different with time-varying, the fuzzy control can soften the buffeting and the sliding algorithm has no the same problems as the hydraulic position servo system, a brandly-new fuzzy sliding control algorithm is designed. In the simulation process, within the parameters of simulated time-varying and outside strong interference, the results show that the hydraulic servo system based on fuzzy sliding mode control algorithm has a greater resistance to internal and external interference and time-varying parameters.


2000 ◽  
Author(s):  
Xuanyin Wang

Abstract This paper researches on the hydraulic servo system by using ordinary on-off valves. The mathematic model of an asymmetric hydraulic cylinder servo control system is built, and its characteristic is analysed here. To reduce the static and dynamic characteristic differences between forward and reverse motion of asymmetric cylinder, and improve system’s performance, a self-tuning linear quadratic gaussian optimum controller (SLQG) is designed successful. In the end, an asymmetric hydraulic cylinder servo system of paint robot is researched. The result shows that the above method is effective.


Sign in / Sign up

Export Citation Format

Share Document