Performance Optimization of a Proposed Piezoelectric Cantilever Energy Harvester Using Genetic Algorithm

Author(s):  
Shimaa M. Ahmed ◽  
Marwa S. Salem ◽  
Mohamed I. Eladawy
Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1206 ◽  
Author(s):  
Wei-Jiun Su ◽  
Jia-Han Lin ◽  
Wei-Chang Li

This paper investigates a piezoelectric energy harvester that consists of a piezoelectric cantilever and a tip mass for horizontal rotational motion. Rotational motion results in centrifugal force, which causes the axial load on the beam and alters the resonant frequency of the system. The piezoelectric energy harvester is installed on a rotational hub in three orientations—inward, outward, and tilted configurations—to examine their influence on the performance of the harvester. The theoretical model of the piezoelectric energy harvester is developed to explain the dynamics of the system and experiments are conducted to validate the model. Theoretical and experimental studies are presented with various tilt angles and distances between the harvester and the rotating center. The results show that the installation distance and the tilt angle can be used to adjust the resonant frequency of the system to match the excitation frequency.


2019 ◽  
Vol 83 (sp1) ◽  
pp. 976
Author(s):  
Ming Liu ◽  
Hengxu Liu ◽  
Hailong Chen ◽  
Yuanchao Chai ◽  
Liquan Wang

Author(s):  
M. Tavakkoli Anbarani ◽  
A. Alasty

A Piezoelectric Energy Harvester (PEH) of cantilever beam type is developed to optimize the generated power by means of active control of moment of inertia of the beam. Distributed parameter equations of vibration of the beam are developed. Then the electromechanical response of the piezoelectric actuator is discussed. The harvester configuration is then described and it is shown that such a configuration can avoid the drastic power drop in presence of uncertainty around resonance frequency by applying voltage to the piezoelectric actuator. Finally the proposed harvester output power working frequency span is compared to conventional methods to show that the significant performance optimization in proposed method is achieved.


2019 ◽  
Vol 29 (1) ◽  
pp. 013132 ◽  
Author(s):  
Guillermo Fuertes ◽  
Manuel Vargas ◽  
Miguel Alfaro ◽  
Rodrigo Soto-Garrido ◽  
Jorge Sabattin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document