Fault Prognosis and Isolation of Lithium-ion Batteries in Electric Vehicles Considering Real-Scenario Thermal Runaway Risks

Author(s):  
Jichao Hong ◽  
Zhenpo Wang ◽  
Changhui Qu ◽  
Fei Ma ◽  
Xiaoming Xu ◽  
...  
Author(s):  
Liubin Song ◽  
Youhang Zheng ◽  
Zhongliang Xiao ◽  
Cheng Wang ◽  
Tianyuan Long

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4636
Author(s):  
JiYang Xu ◽  
Jian Ma ◽  
Xuan Zhao ◽  
Hao Chen ◽  
Bin Xu ◽  
...  

The safety of electric vehicles (EVs) has aroused widespread concern and attention. As the core component of an EV, the power battery directly affects the performance and safety. In order to improve the safety of power batteries, the internal failure mechanism and behavior characteristics of internal short circuit (ISC) and thermal runaway (TR) in extreme cases need to be tested and studied. The safety of lithium ion batteries (LIBs) has become a research hotspot for many scholars. With unreasonable misuse or abuse of lithium ion batteries, it is easy to cause internal short circuits, resulting in thermal runaway, which poses a great threat to the safety of the whole vehicle. This comprehensive review aims to describe the research progress of safety testing methods and technologies of lithium ion batteries under conditions of mechanical, electrical, and thermal abuse, and presents existing problems and future research directions.


2021 ◽  
Vol 41 ◽  
pp. 102888
Author(s):  
Yih-Shing Duh ◽  
Yujie Sun ◽  
Xin Lin ◽  
Jiaojiao Zheng ◽  
Mingchen Wang ◽  
...  

2019 ◽  
Vol 21 (41) ◽  
pp. 22740-22755 ◽  
Author(s):  
Mei-Chin Pang ◽  
Yucang Hao ◽  
Monica Marinescu ◽  
Huizhi Wang ◽  
Mu Chen ◽  
...  

Solid-state lithium batteries could reduce the safety concern due to thermal runaway while improving the gravimetric and volumetric energy density beyond the existing practical limits of lithium-ion batteries.


2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19175-19186
Author(s):  
Jiuchun Jiang ◽  
Xinwei Cong ◽  
Shuowei Li ◽  
Caiping Zhang ◽  
Weige Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document