scholarly journals A Hybrid Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 19175-19186
Author(s):  
Jiuchun Jiang ◽  
Xinwei Cong ◽  
Shuowei Li ◽  
Caiping Zhang ◽  
Weige Zhang ◽  
...  
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1221
Author(s):  
Xinwei Cong ◽  
Caiping Zhang ◽  
Jiuchun Jiang ◽  
Weige Zhang ◽  
Yan Jiang ◽  
...  

To enhance the operational reliability and safety of electric vehicles (EVs), big data platforms for EV supervision are rapidly developing, which makes a large quantity of battery data available for fault diagnosis. Since fault types related to lithium-ion batteries play a dominant role, a comprehensive fault diagnosis method is proposed in this paper, in pursuit of an accurate early fault diagnosis method based on voltage signals from battery cells. The proposed method for battery fault diagnosis mainly includes three parts: variational mode decomposition in the signal analysis part to separate the inconsistency of cell states, critical representative signal feature extraction by using a generalized dimensionless indicator construction formula and effective anomaly detection by sparsity-based clustering. The signal features of the majority of signal-based battery fault detection studies are found to be particular cases with a specific set of parameter values of the proposed indicator construction formula. With the sensitivity and stability balanced by appropriate moving-window size selection, the proposed signal-based method is validated to be capable of earlier anomaly detection, false-alarm reduction, and anomalous performance identification, compared with traditional approaches, based on actual pre-fault operating data from three different situations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jia Wang ◽  
Shenglong Zhang ◽  
Xia Hu

With the increasing demand for electric vehicles, the high voltage safety of electric vehicles has attracted significant attention. More than 30% of electric vehicle accidents are caused by the battery system; hence, it is vital to investigate the fault diagnosis method of lithium-ion battery packs. The fault types of lithium-ion battery packs for electric vehicles are complex, and the treatment is cumbersome. This paper presents a fault diagnosis method for the electric vehicle power battery using the improved radial basis function (RBF) neural network. First, the fault information of lithium-ion battery packs was collected using battery test equipment, and the fault levels were then determined. Subsequently, the improved RBF neural networks were employed to identify the fault of the lithium-ion battery pack system using the experimental data. The diagnosis test results showed that the improved RBF neural networks could effectively identify the fault diagnosis information of the lithium-ion battery packs, and the diagnosis accuracy was about 100%.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1714
Author(s):  
Yan Qiu ◽  
Jing Sun ◽  
Yunlong Shang ◽  
Dongchang Wang

The frequent occurrence of electric vehicle fire accidents reveals the safety hazards of batteries. When a battery fails, its symmetry is broken, which results in a rapid degradation of its safety performance and poses a great threat to electric vehicles. Therefore, accurate battery fault diagnoses and prognoses are the key to ensuring the safe and durable operation of electric vehicles. Thus, in this paper, we propose a new fault diagnosis and prognosis method for lithium-ion batteries based on a nonlinear autoregressive exogenous (NARX) neural network and boxplot for the first time. Firstly, experiments are conducted under different temperature conditions to guarantee the diversity of the data of lithium-ion batteries and then to ensure the accuracy of the fault diagnosis and prognosis at different working temperatures. Based on the collected voltage and current data, the NARX neural network is then used to accurately predict the future battery voltage. A boxplot is then used for the battery fault diagnosis and early warning based on the predicted voltage. Finally, the experimental results (in a new dataset) and a comparative study with a back propagation (BP) neural network not only validate the high precision, all-climate applicability, strong robustness and superiority of the proposed NARX model but also verify the fault diagnosis and early warning ability of the boxplot. In summary, the proposed fault diagnosis and prognosis approach is promising in real electric vehicle applications.


2019 ◽  
Vol 34 (10) ◽  
pp. 9709-9718 ◽  
Author(s):  
Rui Xiong ◽  
Quanqing Yu ◽  
Weixiang Shen ◽  
Cheng Lin ◽  
Fengchun Sun

2021 ◽  
Vol 13 (10) ◽  
pp. 5726
Author(s):  
Aleksandra Wewer ◽  
Pinar Bilge ◽  
Franz Dietrich

Electromobility is a new approach to the reduction of CO2 emissions and the deceleration of global warming. Its environmental impacts are often compared to traditional mobility solutions based on gasoline or diesel engines. The comparison pertains mostly to the single life cycle of a battery. The impact of multiple life cycles remains an important, and yet unanswered, question. The aim of this paper is to demonstrate advances of 2nd life applications for lithium ion batteries from electric vehicles based on their energy demand. Therefore, it highlights the limitations of a conventional life cycle analysis (LCA) and presents a supplementary method of analysis by providing the design and results of a meta study on the environmental impact of lithium ion batteries. The study focuses on energy demand, and investigates its total impact for different cases considering 2nd life applications such as (C1) material recycling, (C2) repurposing and (C3) reuse. Required reprocessing methods such as remanufacturing of batteries lie at the basis of these 2nd life applications. Batteries are used in their 2nd lives for stationary energy storage (C2, repurpose) and electric vehicles (C3, reuse). The study results confirm that both of these 2nd life applications require less energy than the recycling of batteries at the end of their first life and the production of new batteries. The paper concludes by identifying future research areas in order to generate precise forecasts for 2nd life applications and their industrial dissemination.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1091
Author(s):  
Eva Gerold ◽  
Stefan Luidold ◽  
Helmut Antrekowitsch

The consumption of lithium has increased dramatically in recent years. This can be primarily attributed to its use in lithium-ion batteries for the operation of hybrid and electric vehicles. Due to its specific properties, lithium will also continue to be an indispensable key component for rechargeable batteries in the next decades. An average lithium-ion battery contains 5–7% of lithium. These values indicate that used rechargeable batteries are a high-quality raw material for lithium recovery. Currently, the feasibility and reasonability of the hydrometallurgical recycling of lithium from spent lithium-ion batteries is still a field of research. This work is intended to compare the classic method of the precipitation of lithium from synthetic and real pregnant leaching liquors gained from spent lithium-ion batteries with sodium carbonate (state of the art) with alternative precipitation agents such as sodium phosphate and potassium phosphate. Furthermore, the correlation of the obtained product to the used type of phosphate is comprised. In addition, the influence of the process temperature (room temperature to boiling point), as well as the stoichiometric factor of the precipitant, is investigated in order to finally enable a statement about an efficient process, its parameter and the main dependencies.


Sign in / Sign up

Export Citation Format

Share Document