Energy-Efficient Distributed Transmission Scheme for MTC in Dense Wireless Networks: A Mean-Field Approach

2020 ◽  
Vol 7 (1) ◽  
pp. 477-490
Author(s):  
Maialen Larranaga ◽  
Juwendo Denis ◽  
Mohamad Assaad ◽  
Koen De Turck
2010 ◽  
Vol E93-B (6) ◽  
pp. 1645-1648 ◽  
Author(s):  
Jeong-Chul SHIN ◽  
Jin-Hyuk SONG ◽  
Jee-Hoon KIM ◽  
Hyoung-Kyu SONG

2021 ◽  
pp. 168526
Author(s):  
Martin Puschmann ◽  
João C. Getelina ◽  
José A. Hoyos ◽  
Thomas Vojta

Author(s):  
Jun-Sik Sin

In this paper, we investigate the consequences of ion association, coupled with the considerations of finite size effects and orientational ordering of Bjerrum pairs as well as ions and water...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Igor N. Karnaukhov

AbstractUsing mean field approach, we provide analytical and numerical solution of the symmetric Anderson lattice for arbitrary dimension at half filling. The symmetric Anderson lattice is equivalent to the Kondo lattice, which makes it possible to study the behavior of an electron liquid in the Kondo lattice. We have shown that, due to hybridization (through an effective field due to localized electrons) of electrons with different spins and momenta $$\mathbf{k} $$ k and $$\mathbf{k} +\overrightarrow{\pi }$$ k + π → , the gap in the electron spectrum opens at half filling. Such hybridization breaks the conservation of the total magnetic momentum of electrons, the spontaneous symmetry is broken. The state of electron liquid is characterized by a large Fermi surface. A gap in the spectrum is calculated depending on the magnitude of the on-site Coulomb repulsion and value of s–d hybridization for the chain, as well as for square and cubic lattices. Anomalous behavior of the heat capacity at low temperatures in the gapped state, which is realized in the symmetric Anderson lattice, was also found.


Sign in / Sign up

Export Citation Format

Share Document