Ambient Noise Analysis of Deep-Ocean Measurements in the Northeast Pacific

2007 ◽  
Vol 32 (2) ◽  
pp. 497-512 ◽  
Author(s):  
Roy D. Gaul ◽  
David P. Knobles ◽  
Jack A. Shooter ◽  
August F. Wittenborn
2004 ◽  
Vol 115 (5) ◽  
pp. 2508-2508 ◽  
Author(s):  
Roy D. Gaul ◽  
David P. Knobles ◽  
A. F. Wittenborn

2014 ◽  
Vol 96 ◽  
pp. 353-360
Author(s):  
Ya-Chuan Lai ◽  
Bor-Shouh Huang ◽  
Yu-Chih Huang ◽  
Huajian Yao ◽  
Ruey-Der Hwang ◽  
...  

2017 ◽  
Vol 36 (12) ◽  
pp. 1025-1031 ◽  
Author(s):  
Eileen R. Martin ◽  
Chris M. Castillo ◽  
Steve Cole ◽  
Paphop Stock Sawasdee ◽  
Siyuan Yuan ◽  
...  

1993 ◽  
Vol 93 (2) ◽  
pp. 782-789 ◽  
Author(s):  
N. R. Chapman ◽  
J. W. Cornish

2018 ◽  
Vol 26 (02) ◽  
pp. 1850007 ◽  
Author(s):  
Qiulong Yang ◽  
Kunde Yang ◽  
Shunli Duan

Sea-surface wind agitation can be considered the dominant noise sources whose intensity relies on local wind speed during typhoon period. Noise source levels in previous researches may be unappreciated for all oceanic regions and should be corrected for modeling typhoon-generated ambient noise fields in deep ocean. This work describes the inversion of wind-driven noise source level based on a noise field model and experimental measurements, and the verification of the inverted noise source levels with experimental results during typhoon period. A method based on ray approach is presented for modeling underwater ambient noise fields generated by typhoons in deep ocean. Besides, acoustic field reciprocity is utilized to decrease the calculation amount in modeling ambient noise field. What is more, the depth dependence and the vertical directionality of noise field based on the modeling method and the Holland typhoon model are evaluated and analyzed in deep ocean. Furthermore, typhoons named “Soulik” in 2013 and “Nida” in 2016 passed by the receivers deployed in the western Pacific (WP) and the South China Sea (SCS). Variations in sound speed profile, bathymetry, and the related oceanic meteorological parameters are analyzed and taken into consideration for modeling noise field. Boundary constraint simulated annealing (SA) method is utilized to invert the three parameters of noise source levels and to minimize the objective function value. The prediction results with the inverted noise source levels exhibit good agreement with the measured experiment data and are compared with predicted results with other noise sources levels derived in previous researches.


2021 ◽  
Author(s):  
Paola Capone ◽  
Vincenzo Del Gaudio ◽  
Janusz Wasowski ◽  
Wei Hu ◽  
Nicola Venisti ◽  
...  

<p>On 12 May 2008, the mountainous area of Longmenshan, which separates the Tibetan Plateau from the Sichuan Basin, was hit by the 8.0 Ms Wenchuan earthquake which triggered about 200,000 landslides, some of which caused river damming with the formation of temporary lakes. Failures of the landslide dams can induce severe flooding downstream, therefore, it is important to study their structure and mechanical properties in order to evaluate their stability conditions.</p><p>The present study investigates the landslide dam deposits of a rock avalanche triggered in Yang Jia Gou, in Sichuan Province, using single-station three component recordings of ambient noise, with the aim of obtaining information about thickness and mechanical properties of the deposits from their resonance properties. Three noise measurement campaigns and two ERT surveys were conducted to support data interpretation. The data were analyzed using the traditional Nakamura’s technique, HVNR, and the innovative technique HVIP, both based on the calculation of ratios between horizontal and vertical amplitude of ground motion. Both methods revealed the presence  of resonance peaks, a major one at lower frequency, and a minor one at higher frequencies, representative of the deposit layering. HVNR showed a considerable instability in terms of amplitude of H/V, likely because this technique analyzes the entire noise wave field recorded, so to be subject to a large variability related to a variable composition of the noise field. This problem does not affect the HVIP method, which is based on the analysis of the ellipticity of Rayleigh waves, isolated from the recording.</p><p>Rayleigh wave ellipticity curves were used as targets in the inversion phase to obtain the velocity profile of the site. The subsoil model was  constrained by the data derived from the resistivity profiles. The results revealed:  different velocity layers inside the deposit; lateral variations in thickness, in accordance with the higher frequency peak, and in mechanical properties, with an increase of stiffness, probably due to a major portion of rocky blocks; an increase in thickness of the entire deposit, probably because of the irregularities of the substrate.</p><p>Further investigations are in progress through other kinds of noise analysis exploiting the synchronization of simultaneous recordings. This can provide additional constraints (to be derived from the dispersion of group velocity of Rayleigh waves) and aid resolving interpretation ambiguities.</p>


1967 ◽  
Author(s):  
Arthur A. Barrios
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document