scholarly journals Photonic Approach for Generation and Fast Switching of Binary Digitally Modulated RF Signals

2020 ◽  
Vol 12 (5) ◽  
pp. 1-8
Author(s):  
Xia Feng ◽  
Lianshan Yan ◽  
Peng Li ◽  
Jia Ye ◽  
Xihua Zou ◽  
...  
2020 ◽  
Vol 140 (6) ◽  
pp. 488-494
Author(s):  
Haruo Naitoh ◽  
Takaya Sugimoto ◽  
Keisuke Fujisaki
Keyword(s):  

Author(s):  
Bhanu P. Sood ◽  
Michael Pecht ◽  
John Miker ◽  
Tom Wanek

Abstract Schottky diodes are semiconductor switching devices with low forward voltage drops and very fast switching speeds. This paper provides an overview of the common failure modes in Schottky diodes and corresponding failure mechanisms associated with each failure mode. Results of material level evaluation on diodes and packages as well as manufacturing and assembly processes are analyzed to identify a set of possible failure sites with associated failure modes, mechanisms, and causes. A case study is then presented to illustrate the application of a systematic FMMEA methodology to the analysis of a specific failure in a Schottky diode package.


2020 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Pengfei Zhou ◽  
Jason Eshraghian ◽  
Chih-Yang Lin ◽  
Herbert Ho-Ching Iu ◽  
...  

<div>This paper presents the first experimental demonstration</div><div>of a ternary memristor-CMOS logic family. We systematically</div><div>design, simulate and experimentally verify the primitive</div><div>logic functions: the ternary AND, OR and NOT gates. These are then used to build combinational ternary NAND, NOR, XOR and XNOR gates, as well as data handling ternary MAX and MIN gates. Our simulations are performed using a 50-nm process which are verified with in-house fabricated indium-tin-oxide memristors, optimized for fast switching, high transconductance, and low current leakage. We obtain close to an order of magnitude improvement in data density over conventional CMOS logic, and a reduction of switching speed by a factor of 13 over prior state-of-the-art ternary memristor results. We anticipate extensions of this work can realize practical implementation where high data density is of critical importance.</div>


2020 ◽  
Author(s):  
Prashnatita Pal ◽  
Dr.Bikash Chandra Sahana ◽  
Dr. Amiya Kumar Mallick ◽  
Dr. Jayanta Poray

Author(s):  
Femi Robert

Background: Switches are important component in electrical system. The switches needs to have the advantages of low ON-state resistance, very high OFF-state resistance, high isolation, no leakage current, less power loss, fast switching, high linearity, small size, arcless and low cost in bulk production. Also these switches have to be reliable and environmental friendly. Methods: In this paper, macro and microswitches for power applications are extensively reviewed and summarized. Various types of switches such as mechanical, solid-state, hybrid and micromechanical switches have been used for power applications are reviewed. The importance and challenge in achieving arcless switching is presented. Results: The use of micromechanical switches for power applications, actuation techniques, switching modes, reliability and lifetime are also reviewed. The modeling and design challenges are also reviewed. Conclusion: The applications of micromechanical switches shows that the switches can reduce the leakage current in battery operated systems and reduce the size of the system considerably.


Sign in / Sign up

Export Citation Format

Share Document