Antenna Concepts for Millimeter-Wave Automotive Radar Sensors

2012 ◽  
Vol 100 (7) ◽  
pp. 2372-2379 ◽  
Author(s):  
W. Menzel ◽  
A. Moebius
IEEE Network ◽  
2020 ◽  
Vol 34 (2) ◽  
pp. 238-245
Author(s):  
Mengyuan Zhang ◽  
Shibo He ◽  
Chaoqun Yang ◽  
Jiming Chen ◽  
Junshan Zhang

2012 ◽  
Vol 60 (3) ◽  
pp. 845-860 ◽  
Author(s):  
Jürgen Hasch ◽  
Eray Topak ◽  
Raik Schnabel ◽  
Thomas Zwick ◽  
Robert Weigel ◽  
...  

Author(s):  
Alicja Ossowska ◽  
Leen Sit ◽  
Sarath Manchala ◽  
Thomas Vogler ◽  
Kevin Krupinski ◽  
...  

Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 997
Author(s):  
Jun Zhong ◽  
Xin Gou ◽  
Qin Shu ◽  
Xing Liu ◽  
Qi Zeng

Foreign object debris (FOD) on airport runways can cause serious accidents and huge economic losses. FOD detection systems based on millimeter-wave (MMW) radar sensors have the advantages of higher range resolution and lower power consumption. However, it is difficult for traditional FOD detection methods to detect and distinguish weak signals of targets from strong ground clutter. To solve this problem, this paper proposes a new FOD detection approach based on optimized variational mode decomposition (VMD) and support vector data description (SVDD). This approach utilizes SVDD as a classifier to distinguish FOD signals from clutter signals. More importantly, the VMD optimized by whale optimization algorithm (WOA) is used to improve the accuracy and stability of the classifier. The results from both the simulation and field case show the excellent FOD detection performance of the proposed VMD-SVDD method.


Author(s):  
Alicja Ossowska ◽  
Leen Sit ◽  
Sarath Manchala ◽  
Thomas Vogler ◽  
Jana Vanova ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document