millimeter wave antenna
Recently Published Documents


TOTAL DOCUMENTS

301
(FIVE YEARS 119)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Oras Ahmed Shareef ◽  
Ahmed Mohammed Ahmed Sabaawi ◽  
Karrar Shakir Muttair ◽  
Mahmood Farhan Mosleh ◽  
Mohammad Bashir Almashhdany

The design of a millimeter wave (mmW) antenna for the 5G mobile applications is presented in this paper. The designed antenna has dimensions of 10×10×0.245 mm<sup>3</sup>. This includes the copper ground plane. The resonance of the proposed mmW antenna lies within the range of 33 GHz and 43 GHz. These frequency bands are covering the 5G proposed band in terms of the signal speed, data transmission, and high spectral efficiencies. Computer simulation technology (CST) software is used to simulate the proposed 5G antenna including the characteristics of S-parameters, gain, and radiation pattern. Simulation results show that the return loss at resonant frequencies goes -22 dB, which satisfies the requirements of 5G mobile technology.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
H. M. Arifur Rahman ◽  
Mohammad Monirujjaman Khan ◽  
Mohammed Baz ◽  
Mehedi Masud ◽  
Mohammed A. AlZain

This paper presents a novel design for a multiple band millimeter wave antenna with a wide active region in the extremely high frequency (EHF) range. The antenna's performance was tested at three evenly separated frequencies: 60 GHz within the V-band region, 80 GHz within the E-band region, and 100 GHz. Simulation exhibits satisfactory results in terms of gain and efficiency, although the efficiency falling tendency for higher frequency persists. As millimeter wave antennas have miniature-like dimensions and low penetration depth into human body layers, the performance of these antennas is less disturbed by the presence of a human body, making them ideal for body-centric wireless communication (BCWC) applications. Thus, a human body model was created virtually with the necessary property data. Simulations are repeated at the same frequencies as before, with the antenna kept close to the constructed human body model. The results were promising as the gains found increased radiation patterns and return loss curves remained almost identical, except some efficiencies that were considered. Some H-plane radiation patterns are changed by the presence of a human body. Although all three frequencies present satisfactory results, 60 GHz is found to be more balanced, but 100 GHz shows better gain and directivity. Multiple band operability makes this antenna suitable for various applications. Finally, a distance-based analysis was conducted to realize the in-depth characteristics of the antenna by placing the antenna at five different gaps from the human body. The result verifies the antenna’s category as suitable for body-centric communications.


Author(s):  
Mustafa Shakir ◽  
Sohaib Aslam ◽  
M. Usman Sarwar ◽  
Muhammad Adnan ◽  
Muhammad Rafay Khan

AbstractMultiple categories of electronic devices have been introduced recently in response to the demands and developments in the industry. Around 5.19 billion telecom services subscribers today have a significant effect on the allocation and utilization of bandwidth, and hence, there is extensive need to use higher-frequency bands, e.g., mm band to achieve the required quality of service since there is extensive need to shift the paradigm to the next generation. For 5G networks, antenna structuring and designing is an integral part of the communication system. In antenna theory, improving antenna gain is important to attain isotropic antenna, antenna gain can be improved by the controlled behavior of frequencies, beam forming and choosing the right antenna fabric. Through antenna design using different substrates thickness, the propagation losses are examined in order to determine the variation with radiation characteristics. In this way, the examination of the 5G mm-wave spectrum with comparative analysis of input impedance, gain and radiation efficiency is shown through mathematical modeling. Using this approach, the antenna efficiency is improved by up to 20% with increase in substrate thickness. Different antenna arrays have been designed for effective improvement in reflection coefficients. The results are obtained using simulation of antenna in CST and high-frequency structure simulator.


Author(s):  
Melvin Chamakalayil Jose ◽  
Sankararajan Radha ◽  
Balakrishnapillai Suseela Sreeja ◽  
Mohammed Gulam Nabi Alsath ◽  
Pratap Kumar

Abstract This paper presents a novel compact dual-band printed antenna with an omnidirectional radiation pattern for 5G WLAN. The antenna element comprises a star-shaped patch with six disc-shaped elements at the top and a defected ground structure at the bottom, having a radius of 3.77 mm for both. The proper feeding point and alignment with its element parameters help to achieve good impedance matching. The proposed antenna has a single center feed, a low profile, and a straightforward compact structure without any feeding complexity. A high reception fidelity antenna with comparable bandwidth and moderate gain is presented. The prototype radiator was printed on a 4 mm radius and a 1.6 mm thick dielectric substrate (Rogers RT/Duroid 5880), with a dielectric constant of 2.2. The designed antenna is fabricated and measured to validate the simulation result. The measured impedance bandwidth of 1.3 GHz (27.5–28.8 GHz) and 2.2 GHz (32.45–34.65 GHz) with a respective measured gain of 1.1 and 3.2 dBi are achieved at 28 and 34 GHz. The simulated radiation efficiency of above 95% is achieved for both bands. A good agreement between simulated and measured results of the proposed work shows that the proposed antenna is suitable for 5G short-range WLAN communications.


Sign in / Sign up

Export Citation Format

Share Document