scholarly journals Toward a fully integrated automotive radar system-on-chip in 22 nm FD-SOI CMOS

Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.

2019 ◽  
Vol 11 (08) ◽  
pp. 747-754
Author(s):  
Roman Klimovich ◽  
Samuel Jameson ◽  
Eran Socher

AbstractThis paper presents a hybrid design of 1 × 2 and 1 × 4 arrays operating in 0.277–0.292 THz on 65 nm Complementary metal–oxide–semiconductor (CMOS) technology. Each of the chips has an X-band input with 3 ×3 multiplier stages and connected at the output to an on-chip ring antenna. A wideband microstrip Wilkinson four-way and two-way power dividers have been developed on a multilayer printed circuit board to feed the array elements with proper radio frequency and direct current inputs. Demonstrating improvements in effective isotropically radiated power and in total radiated power compared to a single CMOS element, the hybrid integration approach proves effective in implementing coherent THz transmitter arrays. Theoretical and practical factors that reduce the radiated power compared with ideal arrays are also discussed.


2009 ◽  
Vol 1 (6) ◽  
pp. 529-536
Author(s):  
Yenny Pinto ◽  
Christian Person ◽  
Daniel Gloria ◽  
Andreia Cathelin ◽  
Didier Belot ◽  
...  

This paper describes the analysis and the design of an integrated antenna on 0.13 µm SiGe BICMOS technology. A non-resonant dipole antenna integrated on SiGe is electromagnetically coupled to a radiating element reported on a printed circuit board (PCB) substrate. This integrated solution, also compatible with system in package (SIP) concept, provides significant improvements with respect to direct System On Chip (SoC) integration. The main objective of this SIP antenna lies on the optimization of integrated millimeter wave front-ends modules, considering the immediate antenna environment (especially the lossy substrate and technological dielectric/metallic levels), in order to achieve performances compatible with short range radar specifications at 79–81 GHz. One solution, using a RT/Rogers Duroid 6006 PCB (er = 6, thickness h = 127 µm), is presented, providing a 2.93 dBi gain, and 45% radiation efficiency antenna.


2002 ◽  
Vol 124 (3) ◽  
pp. 205-211 ◽  
Author(s):  
John H. Lau ◽  
S. W. Ricky Lee ◽  
Stephen H. Pan ◽  
Chris Chang

An elasto-plastic-creep analysis of a low-cost micro via-in-pad (VIP) substrate for supporting a solder bumped flip chip in a chip scale package (CSP) format which is soldered onto a printed circuit board (PCB) is presented in this study. Emphasis is placed on the design, materials, and reliability of the micro VIP substrate and of the micro VIP CSP solder joints on PCB. The solder is assumed to obey Norton’s creep law. Cross-sections of samples are examined for a better understanding of the solder bump, CSP substrate redistribution, micro VIP, and solder joint. Also, the thermal cycling test results of the micro VIP CSP PCB assembly is presented.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
J. L. Mazher Iqbal ◽  
Munagapati Siva Kishore ◽  
Arulkumaran Ganeshan ◽  
G. Narayan

In contrast to the existing electromechanical systems, the noncontact-type capacitive measurement allows for a chemically and mechanically isolated, continuous, and inherently wear-free measurement. Integration of the sensor directly into the container’s wall offers considerable savings potential because of miniaturization and installation efforts. This paper presents the implementation of noncontact (NC)-type level sensing techniques utilizing the Programmable System on Chip (PSoC). The hardware system developed based on the PSoC microcontroller is interfaced with capacitive-based printed circuit board (PCB) strip. The designer has the choice of placing the sensors directly on the container or close to it. This sensor technology can measure both the conductive and nonconductive liquids with equal accuracy.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000195-000199
Author(s):  
J. Roberts ◽  
A. Mizan ◽  
L. Yushyna

GaN transistors intended for use at 600–900 V and that are capable of providing of 30–100 A are being introduced this year. These devices have a substantially better switching Figure-of-Merit (FOM) than silicon power switches. Rapid market acceptance is expected leading to compound annual growth rates of 85 %. However these devices present new packaging challenges. Their high speed combined with the very high current being switched demands that very low inductance packaging must be combined with highly controlled drive circuitry. While convention, and the usually vertical power device die structure, has largely determined power transistor package formats in the past, the lateral nature of the today GaN devices requires the use of new package types. The new packages have to operate at high temperatures while providing effective heat removal, low inductance, and low series resistance. Because GaN devices are lateral they require the package metal tracks to be integrated within the on-chip tracks to carry the current away from the thin on-chip metal tracks. The new GaN devices are available in two formats: one for use in embedded modular assemblies and the other for use mounted upon conventional circuit board systems. The package intended for discrete printed circuit board (PCB) assemblies has a top side cooling option that simplifies the thermal interface to the heat sink. The paper describes the die layout including the added copper tracks. The corresponding package elements that interface directly with the surface of the die play a vital role in terms of the current handling. They also provide the interface to the external busbars that allow the package to be mounted within, or on PCB. The assembly has been subject to extensive thermal analysis and the performance of a 30 A, 650 V transistor is described.


Author(s):  
Teck Joo Goh ◽  
Chia-Pin Chiu ◽  
K. N. Seetharamu ◽  
G. A. Quadir ◽  
Z. A. Zainal

This paper reviews the design of a flip chip thermal test vehicle. Design requirements for different applications such as thermal characterization, assembly process optimization, and product burn-in simulation are outlined. The design processes of different thermal test chip structures including the temperature sensor and passive heaters are described in detail. In addition, the design of fireball heater, a novel test chip structure used for evaluating the effectiveness of heat spreading of advanced thermal solutions, is also illustrated. The design considerations and processes of the package substrate and printed circuit board with special emphasis on the physical routing of the thermal test chip structures are described. These design processes are supported with thermal data from various finite-element analyses (FEA) carried out to evaluate the capability and limitations of thermal test vehicle design. Design optimization as the outcome of these analyses is also elaborated. Lastly, the validation and calibration procedures of the thermal test vehicle are presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document