Photonic Responses of Devices Based on Horizontally Aligned and Network Single-Walled Carbon Nanotubes and the Effect of Environmental Gas on Device Performance

2011 ◽  
Vol 11 (12) ◽  
pp. 3227-3234
Author(s):  
Yuxiu Zhou ◽  
Tie Li ◽  
Yuelin Wang
MRS Bulletin ◽  
2004 ◽  
Vol 29 (4) ◽  
pp. 272-275 ◽  
Author(s):  
Paul L. McEuen ◽  
Ji-Yong Park

AbstractSingle-walled carbon nanotubes (SWNTs) are emerging as an important new class of electronic materials. Both metallic and semiconducting SWNTs have electrical properties that rival or exceed the best metals or semiconductors known. In this article, we review recent transport and scanning probe experiments that investigate the electrical properties of SWNTs.We address the fundamental scattering mechanisms in SWNTs, both in linear response and at high bias.We also discuss the nature and properties of contacts to SWNTs. Finally, we discuss device performance issues and potential applications in electronics and sensing.


2006 ◽  
Vol 16 (04) ◽  
pp. 977-999 ◽  
Author(s):  
P. J. BURKE ◽  
C. RUTHERGLEN ◽  
Z. YU

In this paper, we review the potential applications of single-walled carbon nanotubes in three areas: passives (interconnects), actives (transistors), and antennas. In the area of actives, potential applications include transistors for RF and microwave amplifiers, mixers, detectors, and filters. We review the experimental state of the art, and present the theoretical predictions (where available) for ultimate device performance. In addition, we discuss fundamental parameters such as dc resistance as a function of length for individual, single-walled carbon nanotubes.


2013 ◽  
Vol 51 (2) ◽  
pp. 137-144
Author(s):  
Naesung Lee ◽  
Jeung Choon Goak ◽  
Tae Yang Kim ◽  
Jongwan Jung ◽  
Young-Soo Seo ◽  
...  

2012 ◽  
Vol 2 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Jurgen Bachl ◽  
Thimo Huber ◽  
Dennis Kuhbeck ◽  
Eva-Maria Schon ◽  
Gabriele Brunner ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3808 ◽  
Author(s):  
Blazej Podlesny ◽  
Bogumila Kumanek ◽  
Angana Borah ◽  
Ryohei Yamaguchi ◽  
Tomohiro Shiraki ◽  
...  

Single-walled carbon nanotubes (SWCNTs) remain one of the most promising materials of our times. One of the goals is to implement semiconducting and metallic SWCNTs in photonics and microelectronics, respectively. In this work, we demonstrated how such materials could be obtained from the parent material by using the aqueous two-phase extraction method (ATPE) at a large scale. We also developed a dedicated process on how to harvest the SWCNTs from the polymer matrices used to form the biphasic system. The technique is beneficial as it isolates SWCNTs with high purity while simultaneously maintaining their surface intact. To validate the utility of the metallic and semiconducting SWCNTs obtained this way, we transformed them into thin free-standing films and characterized their thermoelectric properties.


Sign in / Sign up

Export Citation Format

Share Document