WSN Localization Using RSS in Three-Dimensional Space—A Geometric Method With Closed-Form Solution

2016 ◽  
Vol 16 (11) ◽  
pp. 4397-4404 ◽  
Author(s):  
Yue Ivan Wu ◽  
Hao Wang ◽  
Xiujuan Zheng
1995 ◽  
Vol 80 (2) ◽  
pp. 424-426
Author(s):  
Frank O'Brien ◽  
Sherry E. Hammel ◽  
Chung T. Nguyen

The authors' Poisson probability method for detecting stochastic randomness in three-dimensional space involved the need to evaluate an integral for which no appropriate closed-form solution could be located in standard handbooks. This resulted in a formula specifically calculated to solve this integral in closed form. In this paper the calculation is verified by the method of mathematical induction.


2019 ◽  
Vol 484 (6) ◽  
pp. 672-677
Author(s):  
A. V. Vokhmintcev ◽  
A. V. Melnikov ◽  
K. V. Mironov ◽  
V. V. Burlutskiy

A closed-form solution is proposed for the problem of minimizing a functional consisting of two terms measuring mean-square distances for visually associated characteristic points on an image and meansquare distances for point clouds in terms of a point-to-plane metric. An accurate method for reconstructing three-dimensional dynamic environment is presented, and the properties of closed-form solutions are described. The proposed approach improves the accuracy and convergence of reconstruction methods for complex and large-scale scenes.


2015 ◽  
Vol 83 (2) ◽  
Author(s):  
Shilei Han ◽  
Olivier A. Bauchau

This paper proposes a novel solution strategy for Saint-Venant's problem based on Hamilton's formalism. Saint-Venant's problem focuses on helicoidal beams and its solution hinges upon the determination of the subspace of the system's Hamiltonian matrix associated with its null and pure imaginary eigenvalues. A projection approach is proposed that reduces the system Hamiltonian matrix to a matrix of size 12 × 12, whose eigenvalues are identical to the null and purely imaginary eigenvalues of the original system, with the same Jordan structure. A fundamental theoretical result is established: Saint-Venant's solutions exist because rigid-body motions create no strains. Indeed, the solvability conditions for the governing equations of the problem are satisfied because a matrix identity holds, which expresses the fact that rigid-body motions create no strains. Because it avoids the identification of the Jordan structure of the original system, the implementation of the proposed projection for large, realistic problems is straightforward. Closed-form solutions of the reduced problem are found and three-dimensional stress and strain fields can be recovered from the closed-form solution. Numerical examples are presented to demonstrate the capabilities of the analysis. Predictions are compared to exact solutions of three-dimensional elasticity and three-dimensional FEM analysis.


2018 ◽  
Vol 55 (6) ◽  
pp. 810-828 ◽  
Author(s):  
Abtin Jahanbakhshzadeh ◽  
Michel Aubertin ◽  
Li Li

Backfill is commonly used world-wide in underground mines to improve ground stability and reduce solid waste disposal on the surface. Practical solutions are required to assess the stress state in the backfilled stopes, as the stress state is influenced by the fill settlement that produces a stress transfer to the adjacent rock walls. The majority of existing analytical and numerical solutions for the stresses in backfilled openings were developed for two-dimensional (plane strain) conditions. In reality, mine stopes have a limited extension in the horizontal plane so the stresses are influenced by the four walls. This paper presents recent three-dimensional (3D) simulations results and a new 3D closed-form solution for the vertical and horizontal stresses in inclined backfilled stopes with parallel walls. This solution takes into account the variation of the stresses along the opening width and height, for various inclination angles and fills properties. The numerical results are used to validate the analytical solution and illustrate how the stress state varies along the opening height, length, and width, for different opening sizes and inclination angles of the footwall and hanging wall. Experimental results are also used to assess the validity of the proposed solution.


Author(s):  
Gregory S. Chirikjian

Abstract In this paper, methods for generating closed-form expressions for locally volume preserving deformations of general volumes in three dimensional space are introduced. These methods potentially have applications to computer aided geometric design, the mechanics of materials, and realistic real-time simulation and animation of physical processes. In mechanics, volume preserving deformations are intimately related to the conservation of mass. The importance of this fact manifests itself in design, and in the realistic simulation of many physical systems. Whereas volume preservation is generally written as a constraint on equations of motion in continuum mechanics, this paper develops a set of physically meaningful basic deformations which are intrinsically volume preserving. By repeated application of these primitives, an infinite variety of deformations can be written in closed form.


2012 ◽  
Vol 433-440 ◽  
pp. 2663-2669 ◽  
Author(s):  
Xiao Long Mu ◽  
Xue Rong Cui ◽  
Hao Zhang ◽  
T. Aaron Gulliver

Chan algorithm is a closed form solution to the non-recursive equation set. This algorithm needs only a small amount of calculations but has a high degree of precision on positioning. It is valuable for academic reference. Firstly, it obtains the preliminary solution by using WLS (Weighted Least Squares) twice. Then, it uses the preliminary solution to linearise the nonlinear equation and finally makes the estimation of the position. The channel model can provide the model of indoor office environment ranging from 2 GHz to 10 GHz. Through the UWB (Ultra WideBand) positioning system of the channel model, the LOS(line-of-sight) environment can be simulated and TOA(Time-Of-Arrival) data measured by distance can also be obtained by sampling. However, small LOS errors included in the TOA data may lead to big ones in the positioning of 3D(three-dimensional) space and the precision of positioning may be undermined, when the data are directly applied to the Chan algorithm which is based on the TOA. In order to solve this issue, the TOA data obtained can be processed with MA(Moving Average) algorithm and the precision can be improved.


Sign in / Sign up

Export Citation Format

Share Document