Feasibility for Utilizing IEEE 802.15.4 Compliant Radios Inside Rotating Electrical Machines for Wireless Condition Monitoring Applications

2018 ◽  
Vol 18 (10) ◽  
pp. 4293-4302 ◽  
Author(s):  
Padmanabhan Sampath Kumar ◽  
Lihua Xie ◽  
Boon-Hee Soong ◽  
Meng Yeong Lee
2021 ◽  
Vol 63 (8) ◽  
pp. 457-464
Author(s):  
S Lahdelma

The time derivatives of acceleration offer a great advantage in detecting impact-causing faults at an early stage in condition monitoring applications. Defective rolling bearings and gears are common faults that cause impacts. This article is based on extensive real-world measurements, through which large-scale machines have been studied. Numerous laboratory experiments provide additional insight into the matter. A practical solution for detecting faults with as few features as possible is to measure the root mean square (RMS) velocity according to the standards in the frequency range from 10 Hz to 1000 Hz and the peak value of the second time derivative of acceleration, ie snap. Measuring snap produces good results even when the upper cut-off frequency is as low as 2 kHz or slightly higher. This is valuable information when planning the mounting of accelerometers.


Author(s):  
Zhaklina Stamboliska ◽  
Eugeniusz Rusiński ◽  
Przemyslaw Moczko

Author(s):  
C J S Webber ◽  
B S Payne ◽  
F Gu ◽  
A D Ball

This paper (Part 1) describes the principles of a novel unsupervised adaptive neural network anomaly detection technique, called componential coding, in the context of condition monitoring of electrical machines. Numerical examples are given to illustrate the technique's capabilities. The companion paper (Part 2), which follows, assesses componential coding in its application to real data recorded from a known machine and an entirely unseen machine (a conventional induction motor and a novel transverse flux motor respectively). Componential coding is particularly suited to applications in which no machine-specific tailored techniques have been developed or in which no previous monitoring experience is available. This is because componential coding is an unsupervised technique that derives the features of the data during training, and so requires neither labelling of known faults nor pre-processing to enhance known fault characteristics. Componential coding offers advantages over more familiar unsupervised data processing techniques such as principal component analysis. In addition, componential coding may be implemented in a computationally efficient manner by exploiting the periodic convolution theorem. Periodic convolution also gives the algorithm the advantage of time invariance; i.e. it will work equally well even if the input data signal is offset by arbitrary displacements in time. This means that there is no need to synchronize the input data signal with respect to reference points or to determine the absolute angular position of a rotating part.


Author(s):  
Andreas Kahmen ◽  
Manfred Weck

Process and machine tool condition monitoring are the keys to an increasing degree of automation and consequently to an increasing productivity in manufacturing. The realisation of monitoring functionality demands an extension of the control system. The prerequisite for these extensions are open interfaces in the NC-kernel. Nowadays controls with open NC-kernel interfaces are available on the market. However these interfaces are vendor specific solutions that do not allow the reuse of monitoring software in different controls. To overcome these limitations a platform with vendor neutral open real-time interface for the integration of monitoring functionality into the NC-kernel is presented in this paper. Additionally two realisations of the integration platform for different target systems are described.


Sign in / Sign up

Export Citation Format

Share Document