A High-precision Motor Control Method for Tracking Wandering Azimuth Coordinate System based on Tri-axis Rotational Inertial Navigation System (RINS)

2021 ◽  
pp. 1-1
Author(s):  
Yao Lu ◽  
Lei Wang ◽  
Tianxiao Song ◽  
Wei Wang
2020 ◽  
Vol 28 (4) ◽  
pp. 3-15
Author(s):  
V.G. Peshekhonov ◽  
◽  

The paper addresses the systematic error of an inertial navigation system, caused by the discrepancy between the plumb line and the normal to the reference ellipsoid surface. The methods of this discrepancy estimation, and their use for correcting the output data of inertial navigation systems are studied.


2020 ◽  
Vol 15 (6) ◽  
pp. 753-761
Author(s):  
Yuchao Fang

Airborne photoelectric platform has a wide application prospect in the field of imaging, especially in the field of UAV reconnaissance. However, in the process of image acquisition, the photoelectric platform equipment will produce obvious image shift because of its own attitude change or speed instability, so it is necessary to compensate the collected image. In this study, when the image motion compensation is carried out, the internal and external parameters of the camera are adjusted, and the geometric model of the image is established. The Camera Calibration Toolbox provided by MatLab is used to calibrate the internal parameters of camera. At the same time, when obtaining the camera's internal parameters, the corresponding flight attitude angle is obtained with the aid of the inertial navigation system. At the same time of acquiring the attitude of the aircraft by hardware, it is necessary to obtain the image shift coefficient by using the function. The coordinate system needs to be transformed into a coordinate system suitable for the inertial navigation system, so as to facilitate the calculation of external parameters of the camera. The transformation matrix from image moving image to normal image can be established by obtaining the parameters inside and outside the camera. Through bilinear interpolation, the matrix is derived in MatLab environment. In the experiment, 16 black-and-white grid images are selected to obtain the attitude angle, so as to complete the calculation process of the conversion matrix. Then, the images with image shift are screened out from the images taken in aerial state. The method proposed in this study is used for image compensation. According to the root mean square error analysis, the image compensation scheme proposed in this study is helpful to the imaging application of UAV airborne platform.


Sensors ◽  
2018 ◽  
Vol 18 (12) ◽  
pp. 4412 ◽  
Author(s):  
Jie Li ◽  
Zhengyao Jing ◽  
Xi Zhang ◽  
Jiayu Zhang ◽  
Jinqiang Li ◽  
...  

At present, existing wide range Micro-Electro-Mechanical-Systems (MEMS) inertial sensors have relatively lower precision and direct measurement of the missile’s high-rotation motion inevitably uses a large-range sensor. To achieve high-precision navigation, this paper proposes a novel Semi-strap-down Stabilized Platform (SSP) based on the Missile-borne Semi-Strap-down Inertial Navigation System, which is used to mount sensors and lowers sensor range requirements through isolating the high-rotational motion of missile. First, the author innovatively puts forward a dynamic model under missile-borne environment, then analyses the influence of SSP quality on the range of gyro according to the dynamic model of the SSP. Finally, when the angle of attack of the missile is 2°, the best quality of the SSP with minimum roll angular rate amplitude was calculated through the Runge-Kutta method and the mass gradient control method. Experiments have been carried out by using a high-precision, tri-axial flight simulation turntable to validate the viability of the method. Experiments show that under the same conditions, the angular velocity of the new optimized SSP with the best quality design is reduced to 1/3 of the unoptimized SSP, and the measured roll angle error is reduced to 60% of the unoptimized measurement. The results indicate that the novel SSP has better performance segregating the high-speed rotational motion, and provides theoretical guidance for the high-precision small-range sensor instead of the low-precision wide-range sensor. In addition, the first proposed SSP quality selection method creates a new idea for the improvement of the positioning accuracy in the missile-borne environment.


2010 ◽  
Vol 64 (1) ◽  
pp. 91-108 ◽  
Author(s):  
Ranjan Vepa ◽  
Amzari Zhahir

In this paper an adaptive unscented Kalman filter based mixing filter is used to develop a high-precision kinematic satellite aided inertial navigation system with a modern receiver that incorporates carrier phase smoothing and ambiguity resolution. Using carrier phase measurements with multiple antennas, in addition to a set of typical pseudo-range estimates that can be obtained from a satellite navigation system such as GPS or GLONASS, the feasibility of generating high precision estimates of the typical outputs from an inertial navigation system is demonstrated. The methodology may be developed as a stand-alone system or employed in conjunction with a traditional strapped down inertial navigation system for purposes of initial alignment. Moreover the feasibility of employing adaptive mixing facilitates the possibility of using the system in an interoperable fashion with satellite navigation measurements.


Sign in / Sign up

Export Citation Format

Share Document