Wet Snow Cover Mapping Algorithm Based on Multitemporal COSMO-SkyMed X-Band SAR Images

Author(s):  
Thomas Schellenberger ◽  
Bartolomeo Ventura ◽  
Marc Zebisch ◽  
Claudia Notarnicola
2020 ◽  
Author(s):  
Ludovica De Gregorio ◽  
Francesca Cigna ◽  
Giovanni Cuozzo ◽  
Alexander Jacob ◽  
Simonetta Paloscia ◽  
...  

<p>Snow cover is a critical geophysical parameter for Earth climate and hydrological systems. It contributes to regulate the Earth surface temperature and represents an important water storage that is slowly released during the melting season and contributes to the river discharge.</p><p>The parameter that characterizes the hydrological importance of snow cover is the snow water equivalent (SWE). An accurate estimation of the spatial and temporal distribution of SWE in mountain environments is still a relevant challenge for the scientific community, due to the complex topography that causes a high spatial heterogeneity in snow distribution, by reducing the representativeness of traditional pointwise in situ measurements.</p><p>Several efforts have been done to develop new methods for estimating snow-related parameters. In particular, the large-scale monitoring of the Earth’s surface from space-borne sensors has proven to be very effective, by improving the spatialization of land surface parameters. In the last decades, scientists have extensively investigated the potential of Synthetic Aperture Radar (SAR) data for deriving SWE. Unlikely to visible sensors, microwave sensors do not depend on the presence of sunlight and are not affected by the presence of clouds.</p><p>In this context, the main objective of this work is to exploit the already demonstrated sensitivity of the X-band SAR to snow [1] for estimating the SWE in the mountainous area of South Tyrol, in north-eastern Italy. For this purpose, the information derived from X-band SAR imagery acquired by the Italian Space Agency (ASI)’s COSMO-SkyMed constellation in StripMap HIMAGE mode at 3 m ground resolution is exploited together with ground measurements of SWE, which have been chosen by selecting the dates corresponding to the satellite acquisitions in the study period (2013-2015). In order to increase the training dataset, further backscattering coefficients have been simulated by using an implementation of the Dense Media Radiative Transfer (DMRT) theory, based on the Quasi-Crystalline Approximation (QCA) of Mie scattering of densely packed Sticky spheres [2]. Moreover, to optimize the satellite acquisition and use as much corresponding SWE data as possible, we integrated the ground dataset with other SWE values obtained as explained in [3] by means of a data fusion approach involving the snow model AMUNDSEN.</p><p>This work is carried out by EURAC, CNR/IFAC and ASI in the framework of the 2019-2021 project ‘Development of algorithms for estimation and monitoring of hydrological parameters from satellite and drone’, funded by ASI under grant agreement n.2018-37-HH.0.</p><p> </p><p>References</p><p>[1] Pettinato, S. et al. (2012). The potential of COSMO-SkyMed SAR images in monitoring snow cover characteristics. IEEE Geoscience and Remote Sensing Letters, 10(1), 9-13.</p><p>[2] Tsang, L. et al. (2007). Modeling active microwave remote sensing of snow using dense media radiative transfer (DMRT) theory with multiple-scattering effects. IEEE Transactions on Geoscience and Remote Sensing, 45(4), 990-1004.</p><p>[3] De Gregorio, L. et al. (2019). Improving SWE Estimation by Fusion of Snow Models with Topographic and Remotely Sensed Data. Remote Sensing, 11(17), 2033.</p><p> </p>


2018 ◽  
Vol 10 (7) ◽  
pp. 1155 ◽  
Author(s):  
Samuel Stettner ◽  
Hugues Lantuit ◽  
Birgit Heim ◽  
Jayson Eppler ◽  
Achim Roth ◽  
...  

The timing of snowmelt is an important turning point in the seasonal cycle of small Arctic catchments. The TerraSAR-X (TSX) satellite mission is a synthetic aperture radar system (SAR) with high potential to measure the high spatiotemporal variability of snow cover extent (SCE) and fractional snow cover (FSC) on the small catchment scale. We investigate the performance of multi-polarized and multi-pass TSX X-Band SAR data in monitoring SCE and FSC in small Arctic tundra catchments of Qikiqtaruk (Herschel Island) off the Yukon Coast in the Western Canadian Arctic. We applied a threshold based segmentation on ratio images between TSX images with wet snow and a dry snow reference, and tested the performance of two different thresholds. We quantitatively compared TSX- and Landsat 8-derived SCE maps using confusion matrices and analyzed the spatiotemporal dynamics of snowmelt from 2015 to 2017 using TSX, Landsat 8 and in situ time lapse data. Our data showed that the quality of SCE maps from TSX X-Band data is strongly influenced by polarization and to a lesser degree by incidence angle. VH polarized TSX data performed best in deriving SCE when compared to Landsat 8. TSX derived SCE maps from VH polarization detected late lying snow patches that were not detected by Landsat 8. Results of a local assessment of TSX FSC against the in situ data showed that TSX FSC accurately captured the temporal dynamics of different snow melt regimes that were related to topographic characteristics of the studied catchments. Both in situ and TSX FSC showed a longer snowmelt period in a catchment with higher contributions of steep valleys and a shorter snowmelt period in a catchment with higher contributions of upland terrain. Landsat 8 had fundamental data gaps during the snowmelt period in all 3 years due to cloud cover. The results also revealed that by choosing a positive threshold of 1 dB, detection of ice layers due to diurnal temperature variations resulted in a more accurate estimation of snow cover than a negative threshold that detects wet snow alone. We find that TSX X-Band data in VH polarization performs at a comparable quality to Landsat 8 in deriving SCE maps when a positive threshold is used. We conclude that TSX data polarization can be used to accurately monitor snowmelt events at high temporal and spatial resolution, overcoming limitations of Landsat 8, which due to cloud related data gaps generally only indicated the onset and end of snowmelt.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4751 ◽  
Author(s):  
Sadra Karimzadeh ◽  
Masashi Matsuoka

In this study, we monitor pavement and land subsidence in Tabriz city in NW Iran using X-band synthetic aperture radar (SAR) sensor of Cosmo-SkyMed (CSK) satellites (2017–2018). Fifteen CSK images with a revisit interval of ~30 days have been used. Because of traffic jams, usually cars on streets do not allow pure backscattering measurements of pavements. Thus, the major paved areas (e.g., streets, etc.) of the city are extracted from a minimum-based stacking model of high resolution (HR) SAR images. The technique can be used profitably to reduce the negative impacts of the presence of traffic jams and estimate the possible quality of pavement in the HR SAR images in which the results can be compared by in-situ road roughness measurements. In addition, a time series small baseline subset (SBAS) interferometric SAR (InSAR) analysis is applied for the acquired HR CSK images. The SBAS InSAR results show land subsidence in some parts of the city. The mean rate of line-of-sight (LOS) subsidence is 20 mm/year in district two of the city, which was confirmed by field surveying and mean vertical velocity of Sentinel-1 dataset. The SBAS InSAR results also show that 1.4 km2 of buildings and 65 km of pavement are at an immediate risk of land subsidence.


2021 ◽  
Author(s):  
Benjamin Reuter ◽  
Léo Viallon-Galinier ◽  
Stephanie Mayer ◽  
Pascal Hagenmuller ◽  
Samuel Morin

<p>Snow cover models have mostly been developed to support avalanche forecasting. Recently developed snow instability metrics can help interpreting modeled snow cover data. However, presently snow cover models cannot forecast the relevant avalanche problem types – an essential element to describe avalanche danger. We present an approach to detect, track and assess weak layers in snow cover model output data to eventually assess the related avalanche problem type. We demonstrate the applicability of this approach with both, SNOWPACK and CROCUS snow cover model output for one winter season at Weissfluhjoch. We introduced a classification scheme for four commonly used avalanche problem types including new snow, wind slabs, persistent weak layers and wet snow, so different avalanche situations during a winter season can be classified based on weak layer type and meteorological conditions. According to the modeled avalanche problem types and snow instability metrics both models produced weaknesses in the modeled stratigraphy during similar periods. For instance, in late December 2014 the models picked up a non-persistent as well as a persistent weak layer that were both observed in the field and caused widespread instability in the area. Times when avalanches released naturally were recorded with two seismic avalanche detection systems, and coincided reasonably well with periods of low modeled stability. Moreover, the presented approach provides the avalanche problem types that relate to the observed natural instability which makes the interpretation of modeled snow instability metrics easier. As the presented approach is process-based, it is applicable to any model in any snow avalanche climate. It could be used to anticipate changes in avalanche problem type due to changing climate. Moreover, the presented approach is suited to support the interpretation of snow stratigraphy data for operational forecasting.</p>


2016 ◽  
Vol 8 (6) ◽  
pp. 498 ◽  
Author(s):  
Maria Graziano ◽  
Marco D’Errico ◽  
Giancarlo Rufino

2005 ◽  
Vol 97 (4) ◽  
pp. 458-469 ◽  
Author(s):  
R.P. Gupta ◽  
U.K. Haritashya ◽  
P. Singh

2011 ◽  
Author(s):  
B. Ventura ◽  
T. Schellenberger ◽  
C. Notarnicola ◽  
M. Zebisch ◽  
V. Maddalena ◽  
...  

2014 ◽  
Vol 14 (7) ◽  
pp. 1835-1841 ◽  
Author(s):  
A. Manconi ◽  
F. Casu ◽  
F. Ardizzone ◽  
M. Bonano ◽  
M. Cardinali ◽  
...  

Abstract. We present an approach to measure 3-D surface deformations caused by large, rapid-moving landslides using the amplitude information of high-resolution, X-band synthetic aperture radar (SAR) images. We exploit SAR data captured by the COSMO-SkyMed satellites to measure the deformation produced by the 3 December 2013 Montescaglioso landslide, southern Italy. The deformation produced by the deep-seated landslide exceeded 10 m and caused the disruption of a main road, a few homes and commercial buildings. The results open up the possibility of obtaining 3-D surface deformation maps shortly after the occurrence of large, rapid-moving landslides using high-resolution SAR data.


Sign in / Sign up

Export Citation Format

Share Document