Ultrafast All-Optical Serial-to-Parallel Converters Based on Spin-Polarized Surface-Normal Optical Switches

2007 ◽  
Vol 13 (1) ◽  
pp. 92-103 ◽  
Author(s):  
Ryo Takahashi ◽  
Takako Yasui ◽  
Jae-Kuk Seo ◽  
Hiroyuki Suzuki
Author(s):  
Pei-Hao Fu ◽  
Qianqian Lv ◽  
Xiang-Long Yu ◽  
Jun-Feng Liu ◽  
Jiansheng Wu

Abstract A nodal ring semimetal (NRSM) can be driven to a spin-polarized NRSM or a spin-polarized Weyl semimetal (SWSM) by a high-frequency electromagnetic field. We investigate the conditions in realizing these phases and propose a switchable spin-polarized currents generator based on periodically driven NRSMs. Both bulk and surface polarized currents are investigated. The polarization of bulk current is sensitive to the amplitude of the driving field and robust against the direction and polarization of the driving, the opaqueness of the lead-device interface and the misalignment between the nodal ring and the interface, which provides sufficient flexibility in manipulating the devices. Similar switchable polarized surface currents are also expected, which is contributed by the Fermi arc surface state associated with the Weyl semimetal (WSM) phases. The generation of polarized currents and the polarization switching effect offer opportunities to design periodic driving controlled topological spintronics devices based on NRSMs.


CLEO: 2013 ◽  
2013 ◽  
Author(s):  
Kengo Nozaki ◽  
Eiichi Kuramochi ◽  
Akihiko Shinya ◽  
Masaya Notomi

2003 ◽  
Vol 18 (9) ◽  
pp. 2097-2100 ◽  
Author(s):  
Xiongwei Jiang ◽  
Jianrong Qiu ◽  
Huidan Zeng ◽  
Congshan Zhu

We report on the observation of space-selective precipitation of gold nanoparticles in Au2O-doped silicate glass by a method of irradiation with an 800-nm femtosecond laser and further heat treatment. The irradiated region of the glass first became gray in color after irradiation with the femtosecond laser and then turned red after further heat treatment at around 520 °C, indicating that gold nanoparticles have precipitated in the irradiated region of the glass. A possible mechanism has been suggested that the Au+ ions in the region irradiated are reduced to Au0 atoms by the femtosecond laser, and then the Au0 atoms accumulate to form gold nanoparticles with the glass sample heat treated. The observed phenomenon should have potential applications in the fabrication of ultrafast all-optical switches.


Sign in / Sign up

Export Citation Format

Share Document