On the Potential of Rate Adaptive Point Cloud Streaming on the Point Level

Author(s):  
Dominic Laniewski ◽  
Nils Aschenbruck
Author(s):  
J. Niemeyer ◽  
F. Rottensteiner ◽  
U. Soergel ◽  
C. Heipke

We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the <i>distance</i> and the <i>orientation of a segment with respect to the closest road</i>. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.


Author(s):  
J. Niemeyer ◽  
F. Rottensteiner ◽  
U. Soergel ◽  
C. Heipke

We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the <i>distance</i> and the <i>orientation of a segment with respect to the closest road</i>. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.


2021 ◽  
Vol 13 (3) ◽  
pp. 472
Author(s):  
Yang Chen ◽  
Guanlan Liu ◽  
Yaming Xu ◽  
Pai Pan ◽  
Yin Xing

Airborne laser scanning (ALS) point cloud has been widely used in the fields of ground powerline surveying, forest monitoring, urban modeling, and so on because of the great convenience it brings to people’s daily life. However, the sparsity and uneven distribution of point clouds increases the difficulty of setting uniform parameters for semantic classification. The PointNet++ network is an end-to-end learning network for irregular point data and highly robust to small perturbations of input points along with corruption. It eliminates the need to calculate costly handcrafted features and provides a new paradigm for 3D understanding. However, each local region in the output is abstracted by its centroid and local feature that encodes the centroid’s neighborhood. The feature learned on the centroid point may not contain relevant information of itself for random sampling, especially in large-scale neighborhood balls. Moreover, the centroid point’s global-level information in each sample layer is also not marked. Therefore, this study proposed a modified PointNet++ network architecture which concentrates the point-level and global features on the centroid point towards the local features to facilitate classification. The proposed approach also utilizes a modified Focal Loss function to solve the extremely uneven category distribution on ALS point clouds. An elevation- and distance-based interpolation method is also proposed for the objects in ALS point clouds which exhibit discrepancies in elevation distributions. The experiments on the Vaihingen dataset of the International Society for Photogrammetry and Remote Sensing and the GML(B) 3D dataset demonstrate that the proposed method which provides additional contextual information to support classification achieves high accuracy with simple discriminative models and new state-of-the-art performance in power line categories.


2016 ◽  
Vol 136 (8) ◽  
pp. 1078-1084
Author(s):  
Shoichi Takei ◽  
Shuichi Akizuki ◽  
Manabu Hashimoto

Author(s):  
Jiayong Yu ◽  
Longchen Ma ◽  
Maoyi Tian, ◽  
Xiushan Lu

The unmanned aerial vehicle (UAV)-mounted mobile LiDAR system (ULS) is widely used for geomatics owing to its efficient data acquisition and convenient operation. However, due to limited carrying capacity of a UAV, sensors integrated in the ULS should be small and lightweight, which results in decrease in the density of the collected scanning points. This affects registration between image data and point cloud data. To address this issue, the authors propose a method for registering and fusing ULS sequence images and laser point clouds, wherein they convert the problem of registering point cloud data and image data into a problem of matching feature points between the two images. First, a point cloud is selected to produce an intensity image. Subsequently, the corresponding feature points of the intensity image and the optical image are matched, and exterior orientation parameters are solved using a collinear equation based on image position and orientation. Finally, the sequence images are fused with the laser point cloud, based on the Global Navigation Satellite System (GNSS) time index of the optical image, to generate a true color point cloud. The experimental results show the higher registration accuracy and fusion speed of the proposed method, thereby demonstrating its accuracy and effectiveness.


Sign in / Sign up

Export Citation Format

Share Document