scholarly journals HIERARCHICAL HIGHER ORDER CRF FOR THE CLASSIFICATION OF AIRBORNE LIDAR POINT CLOUDS IN URBAN AREAS

Author(s):  
J. Niemeyer ◽  
F. Rottensteiner ◽  
U. Soergel ◽  
C. Heipke

We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the <i>distance</i> and the <i>orientation of a segment with respect to the closest road</i>. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.

Author(s):  
J. Niemeyer ◽  
F. Rottensteiner ◽  
U. Soergel ◽  
C. Heipke

We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: the <i>distance</i> and the <i>orientation of a segment with respect to the closest road</i>. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.


Author(s):  
J. Niemeyer ◽  
F. Rottensteiner ◽  
U. Soergel ◽  
C. Heipke

In this investigation, we address the task of airborne LiDAR point cloud labelling for urban areas by presenting a contextual classification methodology based on a Conditional Random Field (CRF). A two-stage CRF is set up: in a first step, a point-based CRF is applied. The resulting labellings are then used to generate a segmentation of the classified points using a Conditional Euclidean Clustering algorithm. This algorithm combines neighbouring points with the same object label into one segment. The second step comprises the classification of these segments, again with a CRF. As the number of the segments is much smaller than the number of points, it is computationally feasible to integrate long range interactions into this framework. Additionally, two different types of interactions are introduced: one for the local neighbourhood and another one operating on a coarser scale. <br><br> This paper presents the entire processing chain. We show preliminary results achieved using the Vaihingen LiDAR dataset from the ISPRS Benchmark on Urban Classification and 3D Reconstruction, which consists of three test areas characterised by different and challenging conditions. The utilised classification features are described, and the advantages and remaining problems of our approach are discussed. We also compare our results to those generated by a point-based classification and show that a slight improvement is obtained with this first implementation.


Author(s):  
X.-F. Xing ◽  
M. A. Mostafavi ◽  
G. Edwards ◽  
N. Sabo

<p><strong>Abstract.</strong> Automatic semantic segmentation of point clouds observed in a 3D complex urban scene is a challenging issue. Semantic segmentation of urban scenes based on machine learning algorithm requires appropriate features to distinguish objects from mobile terrestrial and airborne LiDAR point clouds in point level. In this paper, we propose a pointwise semantic segmentation method based on our proposed features derived from Difference of Normal and the features “directional height above” that compare height difference between a given point and neighbors in eight directions in addition to the features based on normal estimation. Random forest classifier is chosen to classify points in mobile terrestrial and airborne LiDAR point clouds. The results obtained from our experiments show that the proposed features are effective for semantic segmentation of mobile terrestrial and airborne LiDAR point clouds, especially for vegetation, building and ground classes in an airborne LiDAR point clouds in urban areas.</p>


Drones ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 104
Author(s):  
Zaide Duran ◽  
Kubra Ozcan ◽  
Muhammed Enes Atik

With the development of photogrammetry technologies, point clouds have found a wide range of use in academic and commercial areas. This situation has made it essential to extract information from point clouds. In particular, artificial intelligence applications have been used to extract information from point clouds to complex structures. Point cloud classification is also one of the leading areas where these applications are used. In this study, the classification of point clouds obtained by aerial photogrammetry and Light Detection and Ranging (LiDAR) technology belonging to the same region is performed by using machine learning. For this purpose, nine popular machine learning methods have been used. Geometric features obtained from point clouds were used for the feature spaces created for classification. Color information is also added to these in the photogrammetric point cloud. According to the LiDAR point cloud results, the highest overall accuracies were obtained as 0.96 with the Multilayer Perceptron (MLP) method. The lowest overall accuracies were obtained as 0.50 with the AdaBoost method. The method with the highest overall accuracy was achieved with the MLP (0.90) method. The lowest overall accuracy method is the GNB method with 0.25 overall accuracy.


2018 ◽  
Vol 10 (9) ◽  
pp. 1403 ◽  
Author(s):  
Jianwei Wu ◽  
Wei Yao ◽  
Przemyslaw Polewski

To meet a growing demand for accurate high-fidelity vegetation cover mapping in urban areas toward biodiversity conservation and assessing the impact of climate change, this paper proposes a complete approach to species and vitality classification at single tree level by synergistic use of multimodality 3D remote sensing data. So far, airborne laser scanning system(ALS or airborne LiDAR) has shown promising results in tree cover mapping for urban areas. This paper analyzes the potential of mobile laser scanning system/mobile mapping system (MLS/MMS)-based methods for recognition of urban plant species and characterization of growth conditions using ultra-dense LiDAR point clouds and provides an objective comparison with the ALS-based methods. Firstly, to solve the extremely intensive computational burden caused by the classification of ultra-dense MLS data, a new method for the semantic labeling of LiDAR data in the urban road environment is developed based on combining a conditional random field (CRF) for the context-based classification of 3D point clouds with shape priors. These priors encode geometric primitives found in the scene through sample consensus segmentation. Then, single trees are segmented from the labelled tree points using the 3D graph cuts algorithm. Multinomial logistic regression classifiers are used to determine the fine deciduous urban tree species of conversation concern and their growth vitality. Finally, the weight-of-evidence (WofE) based decision fusion method is applied to combine the probability outputs of classification results from the MLS and ALS data. The experiment results obtained in city road corridors demonstrated that point cloud data acquired from the airborne platform achieved even slightly better results in terms of tree detection rate, tree species and vitality classification accuracy, although the tree vitality distribution in the test site is less balanced compared to the species distribution. When combined with MLS data, overall accuracies of 78% and 74% for tree species and vitality classification can be achieved, which has improved by 5.7% and 4.64% respectively compared to the usage of airborne data only.


Author(s):  
S. Guinard ◽  
L. Landrieu

We consider the problem of the semantic classification of 3D LiDAR point clouds obtained from urban scenes when the training set is limited. We propose a non-parametric segmentation model for urban scenes composed of anthropic objects of simple shapes, partionning the scene into geometrically-homogeneous segments which size is determined by the local complexity. This segmentation can be integrated into a conditional random field classifier (CRF) in order to capture the high-level structure of the scene. For each cluster, this allows us to aggregate the noisy predictions of a weakly-supervised classifier to produce a higher confidence data term. We demonstrate the improvement provided by our method over two publicly-available large-scale data sets.


2013 ◽  
Vol 5 (8) ◽  
pp. 3749-3775 ◽  
Author(s):  
Jixian Zhang ◽  
Xiangguo Lin ◽  
Xiaogang Ning

Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4685
Author(s):  
Yang ◽  
Wu ◽  
Wang ◽  
Chen ◽  
Wang

Classifying the LiDAR (Light Detection and Ranging) point cloud in the urban environment is a challenging task. Due to the complicated structures of urban objects, it is difficult to find suitable features and classifiers to efficiently category the points. A two-layered graph-cuts-based classification framework is addressed in this study. The hierarchical framework includes a bottom layer that defines the features and classifies point clouds at the point level as well as a top layer that defines the features and classifies the point cloud at the object level. A novel adaptive local modification method is employed to model the interactions between these two layers. The iterative graph cuts algorithm runs around the bottom and top layers to optimize the classification. In this way, the addressed framework benefits from the integration of point features and object features to improve the classification. The experiments demonstrate that the proposed method is capable of producing classification results with high accuracy and efficiency.


Author(s):  
E. Maset ◽  
B. Padova ◽  
A. Fusiello

Abstract. Nowadays, we are witnessing an increasing availability of large-scale airborne LiDAR (Light Detection and Ranging) data, that greatly improve our knowledge of urban areas and natural environment. In order to extract useful information from these massive point clouds, appropriate data processing is required, including point cloud classification. In this paper we present a deep learning method to efficiently perform the classification of large-scale LiDAR data, ensuring a good trade-off between speed and accuracy. The algorithm employs the projection of the point cloud into a two-dimensional image, where every pixel stores height, intensity, and echo information of the point falling in the pixel. The image is then segmented by a Fully Convolutional Network (FCN), assigning a label to each pixel and, consequently, to the corresponding point. In particular, the proposed approach is applied to process a dataset of 7700 km2 that covers the entire Friuli Venezia Giulia region (Italy), allowing to distinguish among five classes (ground, vegetation, roof, overground and power line), with an overall accuracy of 92.9%.


Sensors ◽  
2020 ◽  
Vol 20 (6) ◽  
pp. 1700
Author(s):  
Wei Han ◽  
Ruisheng Wang ◽  
Daqing Huang ◽  
Cheng Xu

We designed a location-context-semantics-based conditional random field (LCS-CRF) framework for the semantic classification of airborne laser scanning (ALS) point clouds. For ALS datasets of high spatial resolution but with severe noise pollutions, more contexture and semantics cues, besides location information, can be exploited to surmount the decrease of discrimination of features for classification. This paper mainly focuses on the semantic classification of ALS data using mixed location-context-semantics cues, which are integrated into a higher-order CRF framework by modeling the probabilistic potentials. The location cues modeled by the unary potentials can provide basic information for discriminating the various classes. The pairwise potentials consider the spatial contextual information by establishing the neighboring interactions between points to favor spatial smoothing. The semantics cues are explicitly encoded in the higher-order potentials. The higher-order potential operates at the clusters level with similar geometric and radiometric properties, guaranteeing the classification accuracy based on semantic rules. To demonstrate the performance of our approach, two standard benchmark datasets were utilized. Experiments show that our method achieves superior classification results with an overall accuracy of 83.1% on the Vaihingen Dataset and an overall accuracy of 94.3% on the Graphics and Media Lab (GML) Dataset A compared with other classification algorithms in the literature.


Sign in / Sign up

Export Citation Format

Share Document